Hypothesis Testing Based Tracking With Spatio-Temporal Joint Interaction Modeling

被引:30
|
作者
Sheng, Hao [1 ,2 ]
Zhang, Yang [1 ,2 ]
Wu, Yubin [1 ,3 ]
Wang, Shuai [1 ,3 ]
Lyu, Weifeng [1 ,2 ]
Ke, Wei [4 ]
Xiong, Zhang [1 ,3 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[2] Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Beijing 100191, Peoples R China
[3] Beihang Univ, Beihang Hangzhou Inst Innovat Yuhang, Hangzhou 311121, Peoples R China
[4] Macao Polytech Inst, Sch Appl Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Target tracking; Trajectory; Testing; Robustness; Feature extraction; Electronic mail; Multi-object tracking; tracking-by-detection; network flow; hypothesis testing; interaction modeling; MULTITARGET;
D O I
10.1109/TCSVT.2020.2988649
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data association is one of the key research in tracking-by-detection framework. Due to frequent interactions among targets, there are various relationships among trajectories in crowded scenes which leads to problems in data association, such as association ambiguity, association omission, etc. To handle these problems, we propose hypothesis-testing based tracking (HTBT) framework to build potential associations between target by constructing and testing hypotheses. In addition, a spatio-temporal interaction graph (STIG) model is introduced to describe the basic interaction patterns of trajectories and test the potential hypotheses. Based on network flow optimization, we formulate offline tracking as a MAP problem. Experimental results show that our tracking framework improves the robustness of tracklet association when detection failure occurs during tracking. On the public MOT16, MOT17 and MOT20 benchmark, our method achieves competitive results compared with other state-of-the-art methods.
引用
收藏
页码:2971 / 2983
页数:13
相关论文
共 50 条
  • [21] Long-Term Tracking Based on Spatio-Temporal Context
    陆佳辉
    陈一民
    邹一波
    邹国志
    JournalofShanghaiJiaotongUniversity(Science), 2017, 22 (04) : 504 - 512
  • [22] Temporal aggregation and spatio-temporal traffic modeling
    Percoco, Marco
    JOURNAL OF TRANSPORT GEOGRAPHY, 2015, 46 : 244 - 247
  • [23] Hierarchical Bayesian modeling of spatio-temporal area-interaction processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [24] Spatio-temporal reasoning based spatio-temporal information management middleware
    Wang, SS
    Liu, DY
    Wang, Z
    ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 436 - 441
  • [25] SPATIO-TEMPORAL INTERACTION IN VISUAL RESOLUTION
    RASHBASS, C
    JOURNAL OF PHYSIOLOGY-LONDON, 1968, 196 (02): : P102 - &
  • [26] SPATIO-TEMPORAL INTERACTION AND BRIGHTNESS JUDGMENTS
    FINLAY, D
    AUSTRALIAN JOURNAL OF PSYCHOLOGY, 1974, 26 (02) : 99 - 102
  • [27] Spatio-temporal interaction with disease mapping
    Sun, DC
    Tsutakawa, RK
    Kim, H
    He, ZQ
    STATISTICS IN MEDICINE, 2000, 19 (15) : 2015 - 2035
  • [28] Spatio-temporal interaction of urban crime
    Grubesic, Tony H.
    Mack, Elizabeth A.
    JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2008, 24 (03) : 285 - 306
  • [29] Spatio-Temporal Interaction of Urban Crime
    Tony H. Grubesic
    Elizabeth A. Mack
    Journal of Quantitative Criminology, 2008, 24 : 285 - 306
  • [30] Spatio-temporal Event Modeling and Ranking
    Li, Xuefei
    Cai, Hongyun
    Huang, Zi
    Yang, Yang
    Zhou, Xiaofang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2013, PT II, 2013, 8181 : 361 - 374