Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group

被引:10
作者
Alvarez, MS [1 ]
机构
[1] Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, Dept Matemat, RA-2000 Rosario, Argentina
关键词
D O I
10.1006/jabr.2001.9013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A(n) be the nth Weyl algebra, and let G subset of SP2n(C) subset of Aut(A(n)) be a finite group of linear automorphisms of A(n). In this paper, we compute the multiplicative structure on the Hochschild cohomology HH.(A(n)(G)) of the algebra of invariants of G. We prove that, as a graded algebra, HH.(A(n)(G)) is isomorphic to the graded algebra associated to the center of the group algebra CG with respect to a filtration defined in terms of the defining representation of G. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:291 / 306
页数:16
相关论文
共 12 条
[1]  
Alev J, 1998, ALGEBRA AND OPERATOR THEORY, P25
[2]   Homology of Invariant of a Weyl algebra [J].
Alev, J ;
Lambre, T .
K-THEORY, 1999, 18 (04) :401-411
[3]   Homology of the invariants of a Weyl Algebra under the action of a finite group [J].
Alev, J ;
Farinati, MA ;
Lambre, T ;
Solotar, AL .
JOURNAL OF ALGEBRA, 2000, 232 (02) :564-577
[4]  
ALEV J, 1986, LECT NOTES MATH, V1197, P1
[5]  
[Anonymous], COMPOSITIO MATH
[6]  
[Anonymous], 1964, J ALGEBRA
[7]  
[Anonymous], 1956, HOMOLOGICAL ALGEBRA
[8]   THE CENTRES OF SYMMETRIC GROUP RINGS [J].
FARAHAT, HK ;
HIGMAN, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 250 (1261) :212-221
[9]  
KNUTSON D, 1973, LECT NOTES MATH, V308
[10]  
Macdonald I, 1995, SYMMETRIC FUNCTIONS, VSecond