Non-oscillatory Solutions of Odd-dimensional System of Functional Differential Equations

被引:0
作者
Yan, Xin Zhou [1 ]
机构
[1] Qingdao Agr Univ, Sch Sci & Informat, Qingdao 266109, Shandong, Peoples R China
来源
AUTOMATION EQUIPMENT AND SYSTEMS, PTS 1-4 | 2012年 / 468-471卷
关键词
non-oscillatory solution; odd-dimensional; eigenvalue; functional differential equation; OSCILLATION;
D O I
10.4028/www.scientific.net/AMR.468-471.2319
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the non-oscillatory problems of odd-dimensional system of linear delay functional differential equations. Based upon the corresponding characteristic equations, we get some criteria for non-oscillatory solutions by utilizing the matrix measures.
引用
收藏
页码:2319 / 2322
页数:4
相关论文
共 8 条
[1]  
Agarwal R.P., 2000, OSCILLATION THEORY D
[2]   On the qualitative behaviors of solutions of third-order nonlinear functional differential equations [J].
Aktas, Mustafa Fahri ;
Cakmak, Devrim ;
Tiryaki, Aydin .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1849-1855
[3]  
Bainov D. D, 1991, DIFF EQU DYNA SYST
[4]   Distribution of zeros of solutions to functional equations [J].
Domoshnitsky, A ;
Drakhlin, M ;
Stavroulakis, LP .
MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (1-2) :193-205
[5]   Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments [J].
Dong, Jiu-Gang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) :3710-3717
[6]   Oscillation for systems of functional differential equations [J].
Kong, QK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (02) :608-619
[7]   Oscillation of even-order half-linear functional differential equations with damping [J].
Liu, Shouhua ;
Zhang, Quanxin ;
Yu, Yuanhong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) :2191-2196
[8]  
Yu J. S, 1995, J ANN MATH CHINA, V16, P33