Sharp bounds on the inverse sum indeg index

被引:46
作者
Falahati-Nezhad, Farzaneh [1 ]
Azari, Mandieh [2 ]
Doslic, Tomislav [3 ]
机构
[1] Islamic Azad Univ, Safadasht Branch, Dept Math, Tehran, Iran
[2] Islamic Azad Univ, Kazerun Branch, Dept Math, POB 73135-168, Kazerun, Iran
[3] Univ Zagreb, Fac Civil Engn, Kaciceva 26, Zagreb 10000, Croatia
关键词
Inverse sum indeg index; Zagreb indices; Randic index; Sum-connectivity index; Harmonic index; Forgotten index; MOLECULAR DESCRIPTORS; CONNECTIVITY INDEX;
D O I
10.1016/j.dam.2016.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse sum indeg index is a recently-introduced bond-additive descriptor that was selected by Vukicevic and Gagperov (2010) as a significant predictor of total surface area of octane isomers. In this paper, we present several sharp upper and lower bounds on the inverse sum indeg index in terms of some graph parameters such as the order, size, radius, number of pendant vertices, minimal and maximal vertex degrees, and minimal non-pendent vertex degree, and relate this index to various well-known graph invariants such as the ordinary and multiplicative Zagreb indices, Randic indices, sum-connectivity index, modified Zagreb index, harmonic index, forgotten index, and eccentric connectivity index. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 50 条
[41]   Sharp bounds on Zagreb indices of cacti with k pendant vertices [J].
Li, Shuchao ;
Yang, Huangxu ;
Zhao, Qin .
FILOMAT, 2012, 26 (06) :1189-1200
[42]   THE UPPER BOUNDS FOR MULTIPLICATIVE SUM ZAGREB INDEX OF SOME GRAPH OPERATIONS [J].
Nacaroglu, Yasar ;
Maden, A. Dilek .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (03) :749-761
[43]   Sharp upper bounds for the F-index of bipartite graphs with a given diameter [J].
Li, Shuli ;
Ge, Jun .
ARS COMBINATORIA, 2019, 146 :143-155
[44]   On sharp bounds of the zero-order Randic index of certain unicyclic graphs [J].
Lin, Anhua ;
Luo, Rong ;
Zha, Xiaoya .
APPLIED MATHEMATICS LETTERS, 2009, 22 (04) :585-589
[45]   Sharp Bounds for the Second-Order General Connectivity Index of Hexagonal Chains [J].
Chen, Deqiang .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
[46]   Computing bounds for the general sum-connectivity index of some graph operations [J].
Akhter, S. ;
Farooq, R. .
ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (02) :147-160
[47]   Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number [J].
Li, Shuchao ;
Zhao, Qin .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) :2869-2879
[48]   Relationship Between Randic Index, Sum-Connectivity Index, Harmonic Index and π-Electron Energy for Benzenoid Hydrocarbons [J].
Ramane, H. S. ;
Joshi, V. B. ;
Jummannaver, R. B. ;
Shindhe, S. D. .
NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (06) :519-524
[49]   ON THE SUM-CONNECTIVITY INDEX [J].
Wang, Shilin ;
Zhou, Bo ;
Trinajstic, Nenad .
FILOMAT, 2011, 25 (03) :29-42
[50]   On the sum-connectivity index of cacti [J].
Ma, Feiying ;
Deng, Hanyuan .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (1-2) :497-507