THE MULTIDIMENSIONAL WAVE EQUATION WITH GENERALIZED ACOUSTIC BOUNDARY CONDITIONS I: STRONG STABILITY

被引:23
作者
Abbas, Z. [1 ]
Nicaise, S. [1 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, Inst Sci & Tech Valenciennes, Lab Math & Ses Applicat Valenciennes, FR CNRS 2956, F-59313 Le Mt Houy 9, Valenciennes, France
关键词
wave equation; acoustic boundary conditions; stability; STABILIZATION; DECAY; ENERGY;
D O I
10.1137/140971336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the wave equation on a domain of R-d, d >= 2, with dynamical boundary control applied on a part of the boundary and a Dirichlet boundary condition on the remaining part. We prove the asymptotic stability and nonuniform stability of the associated semigroup.
引用
收藏
页码:2558 / 2581
页数:24
相关论文
共 24 条
[1]   THE MULTIDIMENSIONAL WAVE EQUATION WITH GENERALIZED ACOUSTIC BOUNDARY CONDITIONS II: POLYNOMIAL STABILITY [J].
Abbas, Z. ;
Nicaise, S. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (04) :2582-2607
[2]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[3]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[4]   LONG-TERM STABILITY ANALYSIS OF ACOUSTIC ABSORBING BOUNDARY CONDITIONS [J].
Barucq, Helene ;
Diaz, Julien ;
Duprat, Veronique .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (11) :2129-2154
[5]   SPECTRAL PROPERTIES OF AN ACOUSTIC BOUNDARY-CONDITION [J].
BEALE, JT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (09) :895-917
[6]  
Belinsky BP, 2000, INT SOC ANAL APP COM, V7, P1319
[7]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478
[8]  
Brezis H., 1983, COLLECT MATH APPL
[10]  
Grisvard P., 1985, MONOGR STUD MATH, V24