Estimation of Lyapunov spectrum and model selection for a chaotic time series

被引:7
|
作者
Li, Qinglan [2 ]
Xu, Pengcheng [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic time series; Lyapunov spectrum; Local linear model; Polynomial model; Radial basis function model; PREDICTION;
D O I
10.1016/j.apm.2012.01.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The estimation of the Lyapunov spectrum for a chaotic time series is discussed in this study. Three models: the local linear (LL) model: the local polynomial (LP) model and the global radial basis function (RBF) model, are compared for estimating the Lyapunov spectrum in this study. The number of neighbors for training the LL model and the LP model; the number of centers for building the RBF model, have been determined by the generalized degree of freedom for a chaotic time series. The above models have been applied to three artificial chaotic time series and two real-world time series, the numerical results show that the model-chosen LL model provides more accurate estimation than other models for clean data set while the RBF model behaves more robust to noise than other models for noisy data set. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6090 / 6099
页数:10
相关论文
共 50 条
  • [21] Chaotic Feature Selection and Reconstruction in Time Series Predictio
    Hussein, Shamina
    Chandra, Rohitash
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT III, 2016, 9949 : 3 - 11
  • [22] Model selection for broadband semiparametric estimation of long memory in time series
    Hurvich, CM
    JOURNAL OF TIME SERIES ANALYSIS, 2001, 22 (06) : 679 - 709
  • [23] Design of fuzzy iterators to generate chaotic time series with assigned Lyapunov exponent
    Baglio, S
    Fortuna, L
    Manganaro, G
    ELECTRONICS LETTERS, 1996, 32 (04) : 292 - 293
  • [24] Effect of noise on estimation of Lyapunov exponents from a time series
    Serletis, Apostolos
    Shahmoradi, Asghar
    Serletis, Demitre
    CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 883 - 887
  • [25] Estimating the largest Lyapunov exponent and noise level from chaotic time series
    Yao, Tian-Liang
    Liu, Hai-Feng
    Xu, Jian-Liang
    Li, Wei-Feng
    CHAOS, 2012, 22 (03)
  • [26] Noise level estimation of chaotic hydrological time series
    Jayawardena, AW
    Xu, PC
    Sivakumar, B
    FRIEND 2002-REGIONAL HYDROLOGY: BRIDGING THE GAP BETWEEN RESEARCH AND PRACTICE, 2002, (274): : 297 - 304
  • [27] TLS parameter estimation for filtering chaotic time series
    Schweizer, SM
    Stonick, VL
    Evans, JL
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 1609 - 1612
  • [28] GLOBAL DYNAMICAL EQUATIONS AND LYAPUNOV EXPONENTS FROM NOISY CHAOTIC TIME SERIES
    Kadtke, James B.
    Brush, Jeffrey
    Holzfuss, Joachim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03): : 607 - 616
  • [29] Estimation of lyapunov exponents of ECG time series - The influence of parameters
    Casaleggio, A
    Braiotta, S
    CHAOS SOLITONS & FRACTALS, 1997, 8 (10) : 1591 - 1599
  • [30] Estimation of Lyapunov exponents of ECG time series - the influence of parameters
    Casaleggio, Aldo
    Braiotta, Stefano
    Chaos, solitons and fractals, 1997, 8 (10): : 1591 - 1599