Estimation of Lyapunov spectrum and model selection for a chaotic time series

被引:7
|
作者
Li, Qinglan [2 ]
Xu, Pengcheng [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[2] Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic time series; Lyapunov spectrum; Local linear model; Polynomial model; Radial basis function model; PREDICTION;
D O I
10.1016/j.apm.2012.01.024
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The estimation of the Lyapunov spectrum for a chaotic time series is discussed in this study. Three models: the local linear (LL) model: the local polynomial (LP) model and the global radial basis function (RBF) model, are compared for estimating the Lyapunov spectrum in this study. The number of neighbors for training the LL model and the LP model; the number of centers for building the RBF model, have been determined by the generalized degree of freedom for a chaotic time series. The above models have been applied to three artificial chaotic time series and two real-world time series, the numerical results show that the model-chosen LL model provides more accurate estimation than other models for clean data set while the RBF model behaves more robust to noise than other models for noisy data set. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6090 / 6099
页数:10
相关论文
共 50 条
  • [1] MEASUREMENT OF THE LYAPUNOV SPECTRUM FROM A CHAOTIC TIME-SERIES
    SANO, M
    SAWADA, Y
    PHYSICAL REVIEW LETTERS, 1985, 55 (10) : 1082 - 1085
  • [2] A SPECTRUM OF LYAPUNOV EXPONENTS OBTAINED FROM A CHAOTIC TIME SERIES
    严绍瑾
    彭永清
    王建中
    Acta Meteorologica Sinica, 1992, (03) : 379 - 385
  • [3] Numerical Estimation of the Lyapunov Exponents of Chaotic Time Series Corrupted by Noises of Large Amplitude
    Eugenia Mera, M.
    Moran, Manuel
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 310 - 313
  • [4] Spectrum estimation of time series with using the autoregression model
    Zakharov, V.V.
    Polyanskaya, E.V.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Radioelektronika, 2001, 44 (03): : 75 - 80
  • [5] Delay estimation in chaotic time series
    Tian, YC
    INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 1791 - 1795
  • [6] Model selection, confidence and scaling in predicting chaotic time-series
    Bollt, EM
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (06): : 1407 - 1422
  • [7] Estimation of Lyapunov spectra from a time series
    Srinivasan, S.
    Prasad, S.
    Patil, S.
    Lazarou, G.
    Picone, J.
    PROCEEDINGS OF THE IEEE SOUTHEASTCON 2006, 2006, : 192 - 195
  • [8] Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent
    Yao Tian-Liang
    Liu Hai-Feng
    Xu Jian-Liang
    Li Wei-Feng
    ACTA PHYSICA SINICA, 2012, 61 (06)
  • [9] LYAPUNOV SPECTRUM OF A CHAOTIC MODEL OF 3-DIMENSIONAL TURBULENCE
    YAMADA, M
    OHKITANI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (12) : 4210 - 4213
  • [10] NOISE LEVEL ESTIMATION FOR A CHAOTIC TIME SERIES
    Xu, Pengcheng
    Li, W. K.
    Jayawardena, A. W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):