ON THE OPTIMAL TRANSITION MATRIX FOR MARKOV CHAIN MONTE CARLO SAMPLING

被引:15
作者
Chen, Ting-Li [1 ]
Chen, Wei-Kuo [2 ]
Hwang, Chii-Ruey [2 ]
Pai, Hui-Ming [3 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan
[2] Acad Sinica, Inst Math, Taipei 11529, Taiwan
[3] Natl Taipei Univ, Dept Stat, Taipei 23741, Taiwan
关键词
Markov chain; Markov chain Monte Carlo; asymptotic variance; average-case analysis; worst-case analysis; rate of convergence; reversibility; nonreversibility;
D O I
10.1137/110832288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let chi be a finite space and let pi be an underlying probability on chi. For any real-valued function f defined on chi, we are interested in calculating the expectation of f under pi. Let X-0, X-1,..., X-n,... be a Markov chain generated by some transition matrix P with invariant distribution pi. The time average, 1/n Sigma(n-1)(k=0) f(X-k), is a reasonable approximation to the expectation, E-pi[f(X)]. Which matrix P minimizes the asymptotic variance of 1/n Sigma(n-1)(k=0) f(X-k)? The answer depends on f. Rather than a worst-case analysis, we will identify the set of P's that minimize the average asymptotic variance, averaged with respect to a uniform distribution on f.
引用
收藏
页码:2743 / 2762
页数:20
相关论文
共 13 条
[1]  
[Anonymous], 1980, Finite Markov Processes and their Applications
[2]  
[Anonymous], 1999, REVERSIBLE MARKOV CH
[3]  
Diaconis P, 2009, B AM MATH SOC, V46, P179
[4]  
FRIGESSI A, 1993, J R STAT SOC B, V55, P205
[5]  
Frigessi A., 1992, Ann. Appl. Probab., V2, P610
[6]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[7]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[8]  
Hwang C-R., 2005, COSMOS, V1, P87, DOI DOI 10.1142/S0219607705000085
[9]   Accelerating diffusions [J].
Hwang, CR ;
Hwang-Ma, SY ;
Sheu, SJ .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) :1433-1444
[10]  
Kontoyiannis I., PROBAB THEORY RELATE