Elementary quadratic chaotic flows with a single non-hyperbolic equilibrium

被引:84
作者
Wei, Zhouchao [1 ,2 ,3 ]
Sprott, J. C. [4 ]
Chen, Huai [5 ]
机构
[1] China Univ Geosci, Sch Math & Phys, Wuhan 430074, Peoples R China
[2] Beijing Univ Technol, Coll Mech Engn, Beijing 100124, Peoples R China
[3] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[4] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[5] China Univ Geosci, Fac Earth Sci, Wuhan 430074, Peoples R China
基金
中国博士后科学基金;
关键词
Jerk system; Hidden attractor; Non-hyperbolic equilibrium; Bifurcation diagram; DYNAMICAL ANALYSIS; SYSTEM; ATTRACTORS;
D O I
10.1016/j.physleta.2015.06.040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper describes a class of third-order explicit autonomous differential equations, called jerk equations, with quadratic nonlinearities that can generate a catalog of nine elementary dissipative chaotic flows with the unusual feature of having a single non-hyperbolic equilibrium. They represent an interesting subclass of dynamical systems that can exhibit many major features of regular and chaotic motion. The proposed systems are investigated through numerical simulations and theoretical analysis. For these jerk dynamical systems, a certain amount of nonlinearity is sufficient to produce chaos through a sequence of period-doubling bifurcations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2184 / 2187
页数:4
相关论文
共 23 条
  • [1] AN EXTENDED SIL'NIKOV HOMOCLINIC THEOREM AND ITS APPLICATIONS
    Chen, Baoying
    Zhou, Tianshou
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (05): : 1679 - 1693
  • [2] Elementary quadratic chaotic flows with no equilibria
    Jafari, Sajad
    Sprott, J. C.
    Golpayegani, S. Mohammad Reza Hashemi
    [J]. PHYSICS LETTERS A, 2013, 377 (09) : 699 - 702
  • [3] Kuznetsov NV, 2005, 2005 International Conference on Physics and Control (PHYSCON), P596
  • [4] Time-varying linearization and the Perron effects
    Leonov, G. A.
    Kuznetsov, N. V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (04): : 1079 - 1107
  • [5] HIDDEN ATTRACTORS IN DYNAMICAL SYSTEMS. FROM HIDDEN OSCILLATIONS IN HILBERT-KOLMOGOROV, AIZERMAN, AND KALMAN PROBLEMS TO HIDDEN CHAOTIC ATTRACTOR IN CHUA CIRCUITS
    Leonov, G. A.
    Kuznetsov, N. V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01):
  • [6] Hidden attractor in smooth Chua systems
    Leonov, G. A.
    Kuznetsov, N. V.
    Vagaitsev, V. I.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (18) : 1482 - 1486
  • [7] Localization of hidden Chua's attractors
    Leonov, G. A.
    Kuznetsov, N. V.
    Vagaitsev, V. I.
    [J]. PHYSICS LETTERS A, 2011, 375 (23) : 2230 - 2233
  • [8] Coexisting Hidden Attractors in a 4-D Simplified Lorenz System
    Li, Chunbiao
    Sprott, J. C.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [9] SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM
    Molaie, Malihe
    Jafari, Sajad
    Sprott, Julien Clinton
    Golpayegani, S. Mohammad Reza Hashemi
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [10] SHILNIKOV THEOREM - A TUTORIAL
    SILVA, CP
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (10): : 675 - 682