Asymptotic Solutions of the Navier-Stokes Equations and Systems of Stretched Vortices Filling a Three-Dimensional Volume

被引:1
作者
Maslov, V. P. [1 ]
Shafarevich, A. I. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Navier-Stokes equation; vortex system; stretched vortex; vortex filament; Euler equation; divergence-free vector field; Reynolds equation; Reynolds stress; BOUNDARY-LAYER; VORTEX RINGS; DISTRIBUTIONS; VICINITY; LAW;
D O I
10.1134/S0001434612010221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct asymptotic solutions of the Navier-Stokes equations describing periodic systems of vortex filaments entirely filling a three-dimensional volume. Such solutions are related to certain topological invariants of divergence-free vector fields on the two-dimensional torus. The equations describing the evolution of of such a structure are defined on a graph which is the set of trajectories of a divergence-free field.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 61 条
  • [1] Abramovich G.N., 1984, THEORY TURBULENT JET
  • [2] Andreev V. K., 1994, MATH APPLICATIONS, V450
  • [3] ASYMPTOTIC SOLITON-FORM SOLUTIONS OF EQUATIONS WITH SMALL DISPERSION
    MASLOV, VP
    OMELYANOV, GA
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (03) : 73 - 149
  • [4] [Anonymous], STUDIES MATH APPL
  • [5] [Anonymous], GESAMMELTE ABHANDLUN
  • [6] [Anonymous], 1905, VERHANDLUNGEN DRITTE
  • [7] Arnold V. I., 1985, ENCY MATH SCI, V3, P5
  • [8] Arnold V.I., 1998, TOPOLOGICAL METHODS, V125
  • [9] Arnold VI., 1989, MATH METHODS CLASSIC, V2nd, P60, DOI 10.1007/978-1-4757-1693-1
  • [10] Batchelor G. K., 1999, INTRO FLUID DYNAMICS, DOI DOI 10.1016/0017-9310(68)90038-0