Surface engineering of ZnO nanoparticles with diethylenetriamine for efficient red quantum-dot light-emitting diodes

被引:10
|
作者
Zhang, Dandan [1 ]
Liu, Yan-Hua [2 ,3 ]
Zhu, Lianqing [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Key Lab, Minist Educ Optoelect Measurement Technol & Instru, Beijing 100192, Peoples R China
[2] Soochow Univ, Sch Optoelect Sci & Engn, Key Lab Adv Opt Mfg Technol Jiangsu Prov, Educ Minist China, Suzhou 215006, Jiangsu, Peoples R China
[3] Soochow Univ, Key Lab Modern Opt Technol, Educ Minist China, Suzhou 215006, Jiangsu, Peoples R China
关键词
HIGHLY EFFICIENT; PERFORMANCE; INJECTION; DEFECTS; DEVICES;
D O I
10.1016/j.isci.2022.105111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the outstanding electron injection/transport capability of ZnO nanoparticles (NPs), quantum-dot light-emitting diodes (QLEDs) are commonly constructed by employing a hybrid device structure with ZnO electron-transporting layer and organic hole-transporting layer. However, the emission quenching of quantum dots and excessive electron injection induced by ZnO NPs also limits the device efficiency and operational stability. Here, diethylenetriamine (DETA) molecules as the ligands are introduced to modify the surface of ZnO NPs, which not only passivate the surface defects of ZnO but also suppress the overwhelming electron injection in the QLED. As a result, the device based on the DETA-modified ZnO NPs exhibits a peak external quantum efficiency of 23.7%, corresponding to an enhancement factor of 129% in comparison with that of the device with as-synthesized ZnO as the electron-transporting layer. The easy and feasible strategy may also be applicable to other photoelectric devices, such as solar cells and photodetectors.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Efficient transparent quantum-dot light-emitting diodes with an inverted architecture
    Zhang, Nan
    Ding, Shihao
    Wang, Kai
    Lyu, Quan
    Sun, Wei Xiao
    OPTICAL MATERIALS EXPRESS, 2021, 11 (07) : 2145 - 2152
  • [2] ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes
    Moyen, Eric
    Kim, Joo Hyun
    Kim, Jeonggi
    Jang, Jin
    ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 5203 - 5211
  • [3] Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering
    Pan, Jun
    Quan, Li Na
    Zhao, Yongbiao
    Peng, Wei
    Murali, Banavoth
    Sarmah, Smritakshi P.
    Yuan, Mingjian
    Sinatra, Lutfan
    Alyami, Noktan M.
    Liu, Jiakai
    Yassitepe, Emre
    Yang, Zhenyu
    Voznyy, Oleksandr
    Comin, Riccardo
    Hedhili, Mohamed N.
    Mohammed, Omar F.
    Lu, Zheng Hong
    Kim, Dong Ha
    Sargent, Edward H.
    Bakr, Osman M.
    ADVANCED MATERIALS, 2016, 28 (39) : 8718 - 8725
  • [4] On the degradation mechanisms of quantum-dot light-emitting diodes
    Chen, Song
    Cao, Weiran
    Liu, Taili
    Tsang, Sai-Wing
    Yang, Yixing
    Yan, Xiaolin
    Qian, Lei
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] On the electroluminescence overshoot of quantum-dot light-emitting diodes
    Yu, Rongmei
    Yin, Furong
    Pu, Chunying
    Zhou, Dawei
    Ji, Wenyu
    OPTICS LETTERS, 2023, 48 (11) : 3059 - 3062
  • [6] On the degradation mechanisms of quantum-dot light-emitting diodes
    Song Chen
    Weiran Cao
    Taili Liu
    Sai-Wing Tsang
    Yixing Yang
    Xiaolin Yan
    Lei Qian
    Nature Communications, 10
  • [7] Effect of Postannealing on Quantum-Dot Light-Emitting Diodes
    Hou, Wenjun
    Wang, Tianfeng
    Guo, Yulin
    Liang, Wenlin
    Wu, Longjia
    Cao, Weiran
    Lin, Xiongfeng
    ACS APPLIED OPTICAL MATERIALS, 2024, 2 (03): : 368 - 372
  • [8] Tunneling effect in quantum-dot light-emitting diodes
    Yu, Rongmei
    Cheng, Jinbing
    Lu, Yingying
    Pu, Chunying
    Wang, Ting
    Ji, Wenyu
    APPLIED PHYSICS LETTERS, 2025, 126 (01)
  • [9] Efficient Quantum Dot Light-Emitting Diodes
    Chen, Shuming
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [10] Efficient flexible quantum-dot light-emitting diodes with unipolar charge injection
    Wang, Rujing
    Wang, Ting
    Kang, Zhihui
    Zhang, Han
    Yu, Rongmei
    Ji, Wenyu
    OPTICS EXPRESS, 2022, 30 (09) : 15747 - 15756