Quiver W-algebras

被引:69
|
作者
Kimura, Taro [1 ]
Pestun, Vasily [2 ]
机构
[1] Keio Univ, Tokyo, Japan
[2] IHES, Bures Sur Yvette, France
基金
欧洲研究理事会;
关键词
Supersymmetric gauge theories; Conformal field theories; W-algebras; Quantum groups; Quiver; instanton; HALL ALGEBRA; K-THEORY; QUANTUM; VARIETIES; VIRASORO; DEFORMATIONS; INSTANTONS;
D O I
10.1007/s11005-018-1072-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
引用
收藏
页码:1351 / 1381
页数:31
相关论文
共 50 条
  • [1] Quiver elliptic W-algebras
    Kimura, Taro
    Pestun, Vasily
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (06) : 1383 - 1405
  • [2] Fractional quiver W-algebras
    Kimura, Taro
    Pestun, Vasily
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (11) : 2425 - 2451
  • [3] Quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1351 - 1381
  • [4] Fractional quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 2425 - 2451
  • [5] Quiver elliptic W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1383 - 1405
  • [6] Gauge origami and quiver W-algebras
    Kimura, Taro
    Noshita, Go
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05):
  • [7] Quiver Yangians and W-algebras for generalized conifolds
    Bao, Jiakang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (22)
  • [8] HANDSAW QUIVER VARIETIES AND FINITE W-ALGEBRAS
    Nakajima, Hiraku
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 633 - 666
  • [9] On Abelianity Lines in Elliptic W-Algebras
    Avan, Jean
    Frappat, Luc
    Ragoucy, Eric
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [10] Lattice W-algebras and logarithmic CFTs
    Gainutdinov, A. M.
    Saleur, H.
    Tipunin, I. Yu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (49)