In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties

被引:89
作者
Olowojoba, Ganiu B. [1 ]
Eslava, Salvador [2 ,3 ]
Gutierrez, Eduardo S. [2 ]
Kinloch, Anthony J. [1 ]
Mattevi, Cecilia [2 ]
Rocha, Victoria G. [2 ]
Taylor, Ambrose C. [1 ]
机构
[1] Imperial Coll London, Mech Mat Div, Dept Mech Engn, London, England
[2] Imperial Coll London, Ctr Adv Struct Ceram, Dept Mat, London, England
[3] Univ Bath, Dept Chem Engn, Bath, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Thermal reduction; Graphene oxide; Reduced graphene oxide; Tensile modulus; Thermal conductivity; Glass transition temperature; Dispersion; In situ processing; EPOXY NANOCOMPOSITES; GRAPHITE OXIDE; CONDUCTIVITY; REDUCTION;
D O I
10.1007/s13204-016-0518-y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene has excellent mechanical, thermal, optical and electrical properties and this has made it a prime target for use as a filler material in the development of multifunctional polymeric composites. However, several challenges need to be overcome to take full advantage of the aforementioned properties of graphene. These include achieving good dispersion and interfacial properties between the graphene filler and the polymeric matrix. In the present work, we report the thermal and mechanical properties of reduced graphene oxide/epoxy composites prepared via a facile, scalable and commercially viable method. Electron micrographs of the composites demonstrate that the reduced graphene oxide (rGO) is well dispersed throughout the composite. Although no improvements in glass transition temperature, tensile strength and thermal stability in air of the composites were observed, good improvements in thermal conductivity (about 36 %), tensile and storage moduli (more than 13 %) were recorded with the addition of 2 wt% of rGO.
引用
收藏
页码:1015 / 1022
页数:8
相关论文
共 25 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties [J].
Chandrasekaran, Swetha ;
Seidel, Christian ;
Schulte, Karl .
EUROPEAN POLYMER JOURNAL, 2013, 49 (12) :3878-3888
[3]   The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles [J].
Chen, J. ;
Kinloch, A. J. ;
Sprenger, S. ;
Taylor, A. C. .
POLYMER, 2013, 54 (16) :4276-4289
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[6]   Thermal stability of graphite oxide [J].
Jeong, Hae-Kyung ;
Lee, Yun Pyo ;
Jin, Mei Hua ;
Kim, Eun Sung ;
Bae, Jung Jun ;
Lee, Young Hee .
CHEMICAL PHYSICS LETTERS, 2009, 470 (4-6) :255-258
[7]   Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity [J].
Kim, Hyunwoo ;
Miura, Yutaka ;
Macosko, Christopher W. .
CHEMISTRY OF MATERIALS, 2010, 22 (11) :3441-3450
[8]   Processing-property relationships of polycarbonate/graphene composites [J].
Kim, Hyunwoo ;
Macosko, Christopher W. .
POLYMER, 2009, 50 (15) :3797-3809
[9]   Recent advances in graphene based polymer composites [J].
Kuilla, Tapas ;
Bhadra, Sambhu ;
Yao, Dahu ;
Kim, Nam Hoon ;
Bose, Saswata ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (11) :1350-1375
[10]   Electromagnetic interference shielding of graphene/epoxy composites [J].
Liang, Jiajie ;
Wang, Yan ;
Huang, Yi ;
Ma, Yanfeng ;
Liu, Zunfeng ;
Cai, Jinming ;
Zhang, Chendong ;
Gao, Hongjun ;
Chen, Yongsheng .
CARBON, 2009, 47 (03) :922-925