On the quadratic convergence of Newton's method under center-Lipschitz but not necessarily Lipschitz hypotheses

被引:5
作者
Argyros, Ioannis K. [1 ]
Hilout, Said [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Poitiers, Lab Math & Applicat, F-86962 Futuroscope, France
关键词
Newton's method; Banach space; majorizing sequences; Lipschitz/center-Lipschitz condition; local/semilocal convergence; radius of convergence; Kantorovich hypothesis; SEMILOCAL CONVERGENCE;
D O I
10.2478/s12175-013-0123-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide new local and semilocal convergence results for Newton's method in a Banach space. The sufficient convergence conditions do not include the Lipschitz constant usually associated with Newton's method. Numerical examples demonstrating the expansion of Newton's method are also provided in this study.
引用
收藏
页码:621 / 638
页数:18
相关论文
共 28 条
[1]  
[Anonymous], 1971, Nonlinear functional analysis and applications
[2]  
[Anonymous], 2008, CONVERGENCE APPL NEW, DOI DOI 10.1007/978-0-387-72743-1
[3]  
Argyros I. K, 1998, THEORY APPL ABSTRACT
[4]   Weaker conditions for the convergence of Newton's method [J].
Argyros, Ioannis K. ;
Hilout, Said .
JOURNAL OF COMPLEXITY, 2012, 28 (03) :364-387
[5]  
Argyros I.K., 2011, ADV ITERATIVE PROCED
[6]   A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space [J].
Argyros, IK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :374-397
[7]   Weaker conditions for the convergence of Newton's method [J].
Argyros, Ioannis K. ;
Hilout, Said .
JOURNAL OF COMPLEXITY, 2012, 28 (03) :364-387
[8]  
Argyros IK, 2011, MATH COMPUT, V80, P327
[9]   On the Newton-Kantorovich hypothesis for solving equations [J].
Argyros, LK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (02) :315-332
[10]  
Catinas E., 1994, Rev. Anal. Numer. Theor. Approx., V23, P47