A Plethysm formula on the characteristic map of induced linear characters from Un(Fq) to GLn(Fq)

被引:0
作者
Chen, Zhi [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 2R7, Canada
关键词
representation theory; induced characters; symmetric functions; supercharacter theory;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives a plethysm formula on the characteristic map of the induced linear characters from the unipotent upper-triangular matrices U-n(F-q) to GL(n)(F-q), the general linear group over finite field Fq. The result turns out to be a multiple of a twisted version of the Hall-Littlewood symmetric functions (P) over tilde (n)[Y; q]. A recurrence relation is also given which makes it easy to carry out the computation.
引用
收藏
页数:19
相关论文
共 13 条
  • [1] Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras
    Aguiar, Marcelo
    Andre, Carlos
    Benedetti, Carolina
    Bergeron, Nantel
    Chen, Zhi
    Diaconis, Persi
    Hendrickson, Anders
    Hsiao, Samuel
    Isaacs, I. Martin
    Jedwab, Andrea
    Johnson, Kenneth
    Karaali, Gizem
    Lauve, Aaron
    Le, Tung
    Lewis, Stephen
    Li, Huilan
    Magaard, Kay
    Marberg, Eric
    Novelli, Jean-Christophe
    Pang, Amy
    Saliola, Franco
    Tevlin, Lenny
    Thibon, Jean-Yves
    Thiem, Nathaniel
    Venkateswaran, Vidya
    Vinroot, C. Ryan
    Yan, Ning
    Zabrocki, Mike
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (04) : 2310 - 2337
  • [2] BASIC CHARACTERS OF THE UNITRIANGULAR GROUP
    ANDRE, CAM
    [J]. JOURNAL OF ALGEBRA, 1995, 175 (01) : 287 - 319
  • [3] [Anonymous], THESIS U PENNSYLVANI
  • [4] Plethystic formulas for Macdonald q,t-Kostka coefficients
    Garsia, AM
    Tesler, G
    [J]. ADVANCES IN MATHEMATICS, 1996, 123 (02) : 144 - 222
  • [5] Gelfand I.M., 1962, DOKL AKAD NAUK SSSR, V147
  • [6] GREEN J. A., 1955, Trans. Amer. Math. Soc., V80, P402
  • [7] Kawanaka N., 1985, Adv. Stud. Pure Math., V6, P175
  • [8] Macdonald I.G, 1995, OXFORD MATH MONOGRAP
  • [9] REUTENAUER CHRISTOPHE, 2003, FREE LIE ALGEBRAS
  • [10] STEINBERG R, 1968, LECT CHEVALLEY UNPUB