Innovative solution to avoid glass substrate bending in a chalcopyrite solar cell fabrication process

被引:2
作者
Ayachi, Boubakeur [1 ]
Aviles, Thomas [2 ]
Vilcot, Jean-Pierre [1 ]
机构
[1] Univ Lille 1, UMR 8520, Inst Elect Microelect & Nanotechnol, Ave Poincare,CS 60069, F-59652 Villeneuve Dascq, France
[2] CROSSLUX, Immeuble CCE, ZI Rousset Peynier, Ave Georges Vacher, F-13106 Rousset, France
关键词
Molybdenum back contact; Thin film; Sputtering; Thermal process; Substrate bending; CIGS solar cell; MO BACK CONTACT;
D O I
10.1016/j.tsf.2018.03.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Considering the chalcopyrite solar cell fabrication process, the commonly reported substrate bending effect that is observed after thermal process, in a front side halogen lamp-based annealing configuration (Rapid Thermal Annealing - RTA-equipment), has been investigated. We first proposed a simple model explaining the substrate bending shape dependence on the initial stress state within the molybdenum (Mo) layer (free, tensile or compressive). Then, we showed that it is possible to overcome this issue by simply using a reactive (oxygen based) sputtering process for the deposition of the Mo layer. Finally, we showed that using a bilayer structure Mo(O)/Mo allows a more precise control of the flatness of the annealed samples. To understand the mechanisms governing such changes in substrate bending, structural and morphological material changes as a function of oxygen flow have been investigated by using X-ray diffraction and scanning electron microscope imaging, respectively. The elemental distribution throughout the Mo(O)/Mo bilayer structure thickness was also investigated.
引用
收藏
页码:194 / 199
页数:6
相关论文
共 13 条
[1]   Influence of Mo back contact porosity on co-evaporated Cu(In,Ga)Se2 thin film properties and related solar cell [J].
Bommersbach, P. ;
Arzel, L. ;
Tomassini, M. ;
Gautron, E. ;
Leyder, C. ;
Urien, M. ;
Dupuy, D. ;
Barreau, N. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (03) :332-343
[2]   A SIMPLE-MODEL FOR THE FORMATION OF COMPRESSIVE STRESS IN THIN-FILMS BY ION-BOMBARDMENT [J].
DAVIS, CA .
THIN SOLID FILMS, 1993, 226 (01) :30-34
[3]  
Jost S., Pub No.: US, Patent No. [2015/ 0171235 A1, 20150171235]
[4]   Optimization of molybdenum thin films for electrodeposited CIGS solar cells [J].
Jubault, M. ;
Ribeaucourt, L. ;
Chassaing, E. ;
Renou, G. ;
Lincot, D. ;
Donsanti, F. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 :S26-S31
[5]   Molybdenum thin film deposited by in-line DC magnetron sputtering as a back contact for Cu(In,Ga)Se2 solar cells [J].
Li, Zhao-Hui ;
Cho, Eou-Sik ;
Kwon, Sang Jik .
APPLIED SURFACE SCIENCE, 2011, 257 (22) :9682-9688
[6]  
MULLER KH, 1986, J VAC SCI TECHNOL A, V4, P184, DOI 10.1116/1.573468
[7]   Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells [J].
Orgassa, K ;
Schock, HW ;
Werner, JH .
THIN SOLID FILMS, 2003, 431 :387-391
[8]   SPUTTERED MOLYBDENUM BILAYER BACK CONTACT FOR COPPER INDIUM DISELENIDE-BASED POLYCRYSTALLINE THIN-FILM SOLAR-CELLS [J].
SCOFIELD, JH ;
DUDA, A ;
ALBIN, D ;
BALLARD, BL ;
PREDECKI, PK .
THIN SOLID FILMS, 1995, 260 (01) :26-31
[9]   THEORY OF SPUTTERING .I. SPUTTERING YIELD OF AMORPHOUS AND POLYCRYSTALLINE TARGETS [J].
SIGMUND, P .
PHYSICAL REVIEW, 1969, 184 (02) :383-+
[10]   Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells [J].
Wada, T ;
Kohara, N ;
Nishiwaki, S ;
Negami, T .
THIN SOLID FILMS, 2001, 387 (1-2) :118-122