Effect of confinement on droplet deformation in shear flow

被引:12
作者
Hua, Haobo [1 ]
Li, Yibao [2 ]
Shin, Jaemin [1 ]
Song, Ha-kyu [1 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 136713, South Korea
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
wall effect; immersed boundary method; shear flow; volume conserving; remeshing; droplet deformation; REYNOLDS-NUMBER MOTION; LEVEL-SET METHOD; BREAKUP; FLUID; DYNAMICS; INERTIA; VISCOSITY; MODEL;
D O I
10.1080/10618562.2013.857406
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The dynamics of a single droplet under shear flow between two parallel plates is investigated by using the immersed boundary method. The immersed boundary method is appropriate for simulating the drop-ambient fluid interface. We apply a volume-conserving method using the normal vector of the surface to prevent mass loss of the droplet. In addition, we present a surface remeshing algorithm to cope with the distortion of droplet interface points caused by the shear flow. This mesh quality improvement in conjunction with the volume-conserving algorithm is particularly essential and critical for long time evolutions. We study the effect of wall confinement on the droplet dynamics. Numerical simulations show good agreement with previous experimental results and theoretical models.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 42 条
[1]  
Ardekani A. M., 2009, PHYS FLUIDS, V21
[2]   An experimental and numerical investigation of the dynamics of microconfined droplets in systems with one viscoelastic phase [J].
Cardinaels, Ruth ;
Afkhami, Shahriar ;
Renardy, Yuriko ;
Moldenaers, Paula .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (1-2) :52-62
[3]   Three-dimensional, fully adaptive simulations of phase-field fluid models [J].
Ceniceros, Hector D. ;
Nos, Rudimar L. ;
Roma, Alexandre M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) :6135-6155
[4]   A 2ND-ORDER THEORY FOR SHEAR DEFORMATION OF DROPS [J].
CHAFFEY, CE ;
BRENNER, H .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1967, 24 (02) :258-&
[5]  
Cristini V, 2006, FLUID DYN MATER PROC, V2, P77
[6]   Drop breakup and fragment size distribution in shear flow [J].
Cristini, V ;
Guido, S ;
Alfani, A ;
Blawzdziewicz, J ;
Loewenberg, M .
JOURNAL OF RHEOLOGY, 2003, 47 (05) :1283-1298
[7]  
Garstecki P., 2005, Physical Review Letters, V94
[8]   Low-Reynolds-number motion of a deformable drop between two parallel plane walls [J].
Griggs, Andrew J. ;
Zinchenko, Alexander Z. ;
Davis, Robert H. .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2007, 33 (02) :182-206
[9]   Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows [J].
Gueyffier, D ;
Li, J ;
Nadim, A ;
Scardovelli, R ;
Zaleski, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 152 (02) :423-456
[10]   NUMERICAL CALCULATION OF TIME-DEPENDENT VISCOUS INCOMPRESSIBLE FLOW OF FLUID WITH FREE SURFACE [J].
HARLOW, FH ;
WELCH, JE .
PHYSICS OF FLUIDS, 1965, 8 (12) :2182-&