VECTOR INVARIANT IDEALS OF ABELIAN GROUP ALGEBRAS UNDER THE ACTION OF THE SYMPLECTIC GROUPS

被引:1
作者
Nan, Jizhu [1 ]
Zeng, Lingli [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Vector invariant ideal; group algebra; symplectic group; group action; MULTIPLICATIVE ACTION; FINITE-GROUPS; FIELD;
D O I
10.1142/S0219498813500461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a finite field and let Sp(2v) (F) be the symplectic group over F. If Sp(2v) (F) acts on the F-vector space F-2v, then it can induce an action on the vector space F-2v circle plus F-2v, defined by (x, y)(A) = (xA, yA), for all x, y is an element of F-2v, A is an element of Sp(2v) (F). If K is a field with char K not equal char F, then Sp(2v) (F) also acts on the group algebra K[F-2v circle plus F-2v]. In this paper, we determine the structures of Sp(2v) (F)-stable ideals of the group algebra K[F-2v circle plus F-2v] by augmentation ideals, and describe the relations between the invariant ideals of K[F-2v] and the vector invariant ideals of K[F-2v circle plus F-2v].
引用
收藏
页数:12
相关论文
共 12 条
[1]   Augmentation modules for affine groups [J].
Brookes, CJB ;
Evans, DM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 :287-294
[2]  
Neusel M. D., 2002, Mathematical Surveys and Monographs, V94
[3]   Invariant ideals of abelian group algebras under the multiplicative action of a field. II [J].
Osterburg, JM ;
Passman, DS ;
Zalesskii, AE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :951-957
[4]  
Passman DS, 2007, TURK J MATH, V31, P113
[5]   Invariant ideals of abelian group algebras under the torus action of a field, II [J].
Passman, D. S. .
JOURNAL OF ALGEBRA, 2011, 331 (01) :362-377
[6]   Invariant ideals of abelian group algebras under the torus action of a field, I [J].
Passman, D. S. .
JOURNAL OF ALGEBRA, 2010, 324 (11) :3035-3043
[7]  
Passman D. S., 2002, RESENHAS IME USP, V5, P377
[8]   Invariant ideals of abelian group algebras under the multiplicative action of a field. I [J].
Passman, DS ;
Zalesskii, AE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :939-949
[9]   ON VECTOR INVARIANTS OVER FINITE-FIELDS [J].
RICHMAN, DR .
ADVANCES IN MATHEMATICS, 1990, 81 (01) :30-65
[10]   Explicit generators of the invariants of finite groups [J].
Richman, DR .
ADVANCES IN MATHEMATICS, 1996, 124 (01) :49-76