Classification of simple Lie algebras on a lattice

被引:6
|
作者
Iohara, Kenji [1 ]
Mathieu, Olivier [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, UMR 5028, CNRS 43, F-69622 Villeurbanne, France
关键词
VIRASORO ALGEBRA; REPRESENTATIONS; MODULES;
D O I
10.1112/plms/pds042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda=Z(n) for some n >= 1. The aim of the paper is to classify all simple Lambda-graded Lie algebras L=circle plus(lambda is an element of Lambda) L-lambda such that dim L-lambda=1 for all lambda. The classification involves two affine Lie algebras, namely A1(1) and A2(2), and a family (W-pi), parametrized by a dense open set of the space of all embeddings pi: Lambda ->(2). The family (W-l) of generalized Witt algebras, indexed by all embeddings l:Lambda ->, appears as a subfamily. In general, the algebras W-pi are described as Lie algebras of symbols of twisted pseudo-differential operators.
引用
收藏
页码:508 / 564
页数:57
相关论文
共 50 条
  • [21] Primitive ideals in affinoid enveloping algebras of semisimple Lie algebras
    Stanciu, Ioan
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (04):
  • [22] Associating quantum vertex algebras to deformed Heisenberg Lie algebras
    Li, Haisheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 707 - 730
  • [23] SERRE FUNCTORS FOR LIE ALGEBRAS AND SUPERALGEBRAS
    Mazorchuk, Volodymyr
    Miemietz, Vanessa
    ANNALES DE L INSTITUT FOURIER, 2012, 62 (01) : 47 - 75
  • [24] Simple modules over the Lie algebras of divergence zero vector fields on a torus
    Dubsky, Brendan Frisk
    Guo, Xiangqian
    Yao, Yufeng
    Zhao, Kaiming
    FORUM MATHEMATICUM, 2019, 31 (03) : 727 - 741
  • [25] Representations of Lie-Yamaguti algebras with semisimple enveloping Lie algebras
    Takahashi, Nobuyoshi
    JOURNAL OF ALGEBRA, 2025, 664 : 452 - 483
  • [26] Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras
    Futorny, Vyacheslav
    Krizka, Libor
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (11) : 4901 - 4924
  • [27] EXOTIC GROUP C* -ALGEBRAS OF SIMPLE LIE GROUPS WITH REAL RANK ONE
    De Laat, Tim
    Siebenand, Timo
    ANNALES DE L INSTITUT FOURIER, 2021, 71 (05) : 2117 - 2136
  • [28] Orthogonal Toroidal Lie Algebras, Vertex Algebras and Skew Howe Duality
    Chen, Fulin
    Huang, Xin
    Tan, Shaobin
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 301 - 312
  • [29] Quasiclassical Lie algebras
    Baranov, AA
    Zalesskii, AE
    JOURNAL OF ALGEBRA, 2001, 243 (01) : 264 - 293
  • [30] Levi decomposable algebras in the classical Lie algebras
    Douglas, Andrew
    Repka, Joe
    JOURNAL OF ALGEBRA, 2015, 428 : 292 - 314