Classification of simple Lie algebras on a lattice

被引:6
|
作者
Iohara, Kenji [1 ]
Mathieu, Olivier [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, UMR 5028, CNRS 43, F-69622 Villeurbanne, France
关键词
VIRASORO ALGEBRA; REPRESENTATIONS; MODULES;
D O I
10.1112/plms/pds042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda=Z(n) for some n >= 1. The aim of the paper is to classify all simple Lambda-graded Lie algebras L=circle plus(lambda is an element of Lambda) L-lambda such that dim L-lambda=1 for all lambda. The classification involves two affine Lie algebras, namely A1(1) and A2(2), and a family (W-pi), parametrized by a dense open set of the space of all embeddings pi: Lambda ->(2). The family (W-l) of generalized Witt algebras, indexed by all embeddings l:Lambda ->, appears as a subfamily. In general, the algebras W-pi are described as Lie algebras of symbols of twisted pseudo-differential operators.
引用
收藏
页码:508 / 564
页数:57
相关论文
共 50 条
  • [1] Translated simple modules for Lie algebras and simple supermodules for Lie superalgebras
    Chen, Chih-Whi
    Coulembier, Kevin
    Mazorchuk, Volodymyr
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 255 - 281
  • [2] Graded simple Lie algebras and graded simple representations
    Mazorchuk, Volodymyr
    Zhao, Kaiming
    MANUSCRIPTA MATHEMATICA, 2018, 156 (1-2) : 215 - 240
  • [3] Gradings of positive rank on simple Lie algebras
    Reeder, Mark
    Levy, Paul
    Yu, Jiu-Kang
    Gross, Benedict H.
    TRANSFORMATION GROUPS, 2012, 17 (04) : 1123 - 1190
  • [4] The Poincare algebra in rank 3 simple Lie algebras
    Douglas, Andrew
    de Guise, Hubert
    Repka, Joe
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [5] Simple modules for the restricted Cartan type Lie algebras
    Holmes, Randall R.
    Zhang, Chaowen
    ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (03) : 285 - 307
  • [6] Simple Modules for the Restricted Cartan Type Lie Algebras
    Randall R. Holmes
    Chaowen Zhang
    Algebras and Representation Theory, 2006, 9 : 285 - 307
  • [7] A Pieri Formula for the Characters of Complex Simple Lie Algebras
    van Diejen, J. F.
    TRANSFORMATION GROUPS, 2024, 29 (01) : 47 - 75
  • [8] Trigonometric Lie algebras, affine Lie algebras, and vertex algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    ADVANCES IN MATHEMATICS, 2020, 363
  • [9] Descriptions of strongly multiplicity free representations for simple Lie algebras
    Sun, Bin-Ni
    Zhao, Yufeng
    JOURNAL OF ALGEBRA, 2024, 644 : 655 - 689
  • [10] Simple modules for twisted Hamiltonian extended affine Lie algebras
    Tantubay, Santanu
    Chakraborty, Priyanshu
    Batra, Punita
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 696 : 29 - 45