Water detection through spatio-temporal invariant descriptors

被引:24
|
作者
Mettes, Pascal [1 ,2 ]
Tan, Robby T. [1 ,3 ]
Veltkamp, Remco C. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Amsterdam, Intelligent Syst Lab Amsterdam, Amsterdam, Netherlands
[3] SIM Univ, Multimedia Technol & Design Programme, Singapore, Singapore
关键词
Water detection; Spatio-temporal descriptors; Fourier analysis; Invariants; Markov random fields; LOCAL BINARY PATTERNS; SEGMENTATION; RECOGNITION;
D O I
10.1016/j.cviu.2016.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video preprocessing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [31] Online Spatio-Temporal Fuzzy Relations
    Poli, Jean-Philippe
    Boudet, Laurence
    Le Yaouanc, Jean-Marie
    2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [32] Joint Spatio-Temporal Alignment of Sequences
    Diego, Ferran
    Serrat, Joan
    Lopez, Antonio M.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (06) : 1377 - 1387
  • [33] Spatio-temporal properties of letter crowding
    Chung, Susana T. L.
    JOURNAL OF VISION, 2016, 16 (06):
  • [34] Spatio-Temporal Registration of Multiple Trajectories
    Padoy, Nicolas
    Hager, Gregory D.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, MICCAI 2011, PT I, 2011, 6891 : 145 - 152
  • [35] Spatio-Temporal Querying in Smart Spaces
    Menon, Vivek
    Jayaraman, Bharat
    Govindaraju, Venu
    ANT 2012 AND MOBIWIS 2012, 2012, 10 : 366 - 373
  • [36] MDN: A Deep Maximization-Differentiation Network for Spatio-Temporal Depression Detection
    de Melo, Wheidima Carneiro
    Granger, Eric
    Lopez, Miguel Bordallo
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 578 - 590
  • [37] A Spatio-Temporal Spotting Network with Sliding Windows for Micro-Expression Detection
    Fu, Wenwen
    An, Zhihong
    Huang, Wendong
    Sun, Haoran
    Gong, Wenjuan
    Gonzalez, Jordi
    ELECTRONICS, 2023, 12 (18)
  • [38] Detection of mental stress using novel spatio-temporal distribution of brain activations
    Chatterjee, Debatri
    Gavas, Rahul
    Saha, Sanjoy Kumar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [39] Survey on visual rhythms: A spatio-temporal representation for video sequences
    Roberto e Souza, Marcos
    Maia, Helena de Almeida
    Vieira, Marcelo Bernardes
    Pedrini, Helio
    NEUROCOMPUTING, 2020, 402 : 409 - 422
  • [40] Empowering UAV scene perception by semantic spatio-temporal features
    Cavaliere, Danilo
    Saggese, Alessia
    Senatore, Sabrina
    Vento, Mario
    Loia, Vincenzo
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENTAL ENGINEERING (EE), 2018,