Water detection through spatio-temporal invariant descriptors

被引:24
|
作者
Mettes, Pascal [1 ,2 ]
Tan, Robby T. [1 ,3 ]
Veltkamp, Remco C. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Amsterdam, Intelligent Syst Lab Amsterdam, Amsterdam, Netherlands
[3] SIM Univ, Multimedia Technol & Design Programme, Singapore, Singapore
关键词
Water detection; Spatio-temporal descriptors; Fourier analysis; Invariants; Markov random fields; LOCAL BINARY PATTERNS; SEGMENTATION; RECOGNITION;
D O I
10.1016/j.cviu.2016.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video preprocessing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [21] Spatio-Temporal Texture Features for Presentation Attack Detection in Biometric Systems
    Pan, Shi
    Deravi, Farzin
    2019 EIGHTH INTERNATIONAL CONFERENCE ON EMERGING SECURITY TECHNOLOGIES (EST), 2019,
  • [22] Spatio-temporal action localization and detection for human recognition in big dataset
    Megrhi, Sameh
    Jmal, Marwa
    Souidene, Wided
    Beghdadi, Azeddine
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 41 : 375 - 390
  • [23] Bilinear Models for Spatio-Temporal Point Distribution Analysis
    Hoogendoorn, Corne
    Sukno, Federico M.
    Ordas, Sebastian
    Frangi, Alejandro F.
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 85 (03) : 237 - 252
  • [24] Spatio-temporal Road Detection from Aerial Imagery using CNNs
    Luque, Belen
    Ramon Morros, Josep
    Ruiz-Hidalgo, Javier
    PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2017), VOL 4, 2017, : 493 - 500
  • [25] A spatio-temporal graph convolutional network for ultrasound echocardiographic landmark detection
    Li, Honghe
    Yang, Jinzhu
    Xuan, Zhanfeng
    Qu, Mingjun
    Wang, Yonghuai
    Feng, Chaolu
    MEDICAL IMAGE ANALYSIS, 2024, 97
  • [26] Detection of Groups of People in Surveillance Videos Based on Spatio-Temporal Clues
    Mora-Colque, Rensso V. H.
    Camara-Chavez, Guillermo
    Schwartz, William Robson
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 948 - 955
  • [27] Spatio-temporal summarization of dance choreographies
    Rallis, Ioannis
    Doulamis, Nikolaos
    Doulamis, Anastasios
    Voulodimos, Athanasios
    Vescoukis, Vassilios
    COMPUTERS & GRAPHICS-UK, 2018, 73 : 88 - 101
  • [28] Spatio-temporal classification for polyp diagnosis
    Puyal, Juana Gonzalez-Bueno
    Brandao, Patrick
    Ahmad, Omer F.
    Bhatia, Kanwal K.
    Toth, Daniel
    Kader, Rawen
    Lovat, Laurence
    Mountney, Peter
    Stoyanov, Danail
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (02) : 593 - 607
  • [29] Spatio-Temporal Good Features to Track
    Feichtenhofer, Christoph
    Pinz, Axel
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, : 246 - 253
  • [30] Algorithm for spatio-temporal heart segmentation
    Majcenic, Z
    Loncaric, S
    MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 : 936 - 943