Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration

被引:316
|
作者
Kim, Jaemyung [1 ]
Byun, Segi [1 ,2 ]
Smith, Alexander J. [1 ]
Yu, Jin [2 ]
Huang, Jiaxing [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2013年 / 4卷 / 08期
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
HYDROGEN EVOLUTION; GRAPHENE; MOS2; IDENTIFICATION; SEMICONDUCTOR; PHOTOCATALYST; INTERCALATION; EFFICIENT; CATALYST; WATER;
D O I
10.1021/jz400507t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here, we report that transition-metal dichalcogenides such as MoS2 and WS2 can be decorated with gold nanoparticles by a spontaneous redox reaction with hexachloroauric acid in water. The resulting gold nanoparticles tend to grow at defective sites, and therefore, selective decorations at the edges and the line defects in the basal planes of bulk single crystals were observed. The lithium intercalation-exfoliation process makes the basal planes of chemically exfoliated MoS2 and WS2 sheets much more defective than their single-crystalline counterparts, leading to a more uniform and higher-density deposition of gold nanoparticles. Due to the greatly improved charge transport between adjacent sheets, the resulting MoS2/Au and WS2/Au hybrids show significantly enhanced electrocatalytic performance toward hydrogen evolution reactions.
引用
收藏
页码:1227 / 1232
页数:6
相关论文
共 50 条
  • [1] Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides
    Bhattacharyya, Swastibrata
    Singh, Abhishek K.
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [2] Nanoribbon edges of transition-metal dichalcogenides: Stability and electronic properties
    Davelou, Daphne
    Kopidakis, Georgios
    Kaxiras, Efthimios
    Remediakis, Ioannis N.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [3] Colloidal Nanostructures of Transition-Metal Dichalcogenides
    Sun, Yifan
    Terrones, Mauricio
    Schaak, Raymond E.
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (06) : 1517 - 1527
  • [4] Electronic properties of transition-metal dichalcogenides
    Kuc, Agnieszka
    Heine, Thomas
    Kis, Andras
    MRS BULLETIN, 2015, 40 (07) : 577 - 584
  • [5] Nanoscale Variations in the Electrocatalytic Activity of Layered Transition-Metal Dichalcogenides
    Tao, Binglin
    Unwin, Patrick R.
    Bentley, Cameron L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (01) : 789 - 798
  • [6] Electronic and Thermoelectric Properties of Transition-Metal Dichalcogenides
    Bilc, Daniel I.
    Benea, Diana
    Pop, Viorel
    Ghosez, Philippe
    Verstraete, Matthieu J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (49) : 27084 - 27097
  • [7] Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides
    Berkelbach, Timothy C.
    Reichman, David R.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 9, 2018, 9 : 379 - 396
  • [8] Transition-metal dichalcogenides for spintronic applications
    Zibouche, Nourdine
    Kuc, Agnieszka
    Musfeldt, Janice
    Heine, Thomas
    ANNALEN DER PHYSIK, 2014, 526 (9-10) : 395 - 401
  • [9] Spontaneous curling of freestanding Janus monolayer transition-metal dichalcogenides
    Xiong, Qi-lin
    Zhou, Jianli
    Zhang, Jin
    Kitamura, Takayuki
    Li, Zhen-huan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (32) : 20988 - 20995
  • [10] Tuning electronic properties of transition-metal dichalcogenides via defect charge
    Aghajanian, Martik
    Mostofi, Arash A.
    Lischner, Johannes
    SCIENTIFIC REPORTS, 2018, 8