Large deviation for the nonlocal Kuramoto-Sivashinsky SPDE

被引:8
作者
Bo, Lijun [1 ]
Jiang, Yiming [2 ,3 ]
机构
[1] Xidian Univ, Dept Math, Xian 710071, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Large deviation principle; Nonlocal Kuramoto-Sivashinsky equations; Small noise perturbations; Contraction principle;
D O I
10.1016/j.na.2013.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a large deviation principle for the (weak) solution to a nonlocal Kuramoto-Sivashinsky stochastic partial differential equation with small noise perturbation. The key technique is an application of the contraction principle. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:100 / 114
页数:15
相关论文
共 10 条
[1]   Large deviations for a Burgers'-type SPDE [J].
Cardon-Weber, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) :53-70
[2]  
Da Prato G, 1996, ERGODICITY INFINITE
[3]   On the stochastic Kuramoto-Sivashinsky equation [J].
Duan, JQ ;
Ervin, VJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (02) :205-216
[4]  
MARQUEZCARRERAS D, 2003, ELECTRON J PROBAB, V8, P1
[5]  
Mohammed SEA, 2006, DISCRETE CONT DYN-B, V6, P881
[6]   Large deviations for stochastic generalized porous media equations [J].
Roeckner, Michael ;
Wang, Feng-Yu ;
Wu, Liming .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (12) :1677-1689
[7]  
Temam R., 1998, Infinite Dimensional Dynamical Systems in Mechanics and Physics, VSecond
[8]   Dynamics for the stochastic nonlocal Kuramoto-Sivashinsky equation [J].
Yang, Desheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) :550-570
[9]  
Zeidler E., 1990, Nonlinear monotone operators, VII/B
[10]   Large deviations for stochastic nonlinear beam equations [J].
Zhang, Tusheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 248 (01) :175-201