On homology cobordism and local equivalence between plumbed manifolds

被引:11
作者
Dai, Irving [1 ]
Stoffregen, Matthew [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
FLOER HOMOLOGY; INVARIANTS;
D O I
10.2140/gt.2019.23.865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a structural understanding of the involutive Heegaard Floer homology for all linear combinations of almost-rational (AR) plumbed three-manifolds. We use this to show that the Neumann-Siebenmann invariant is a homology cobordism invariant for all linear combinations of AR plumbed homology spheres. As a corollary, we prove that if Y is a linear combination of AR plumbed homology spheres with mu(Y) = 1, then Y is not torsion in the homology cobordism group. A general computation of the involutive Heegaard Floer correction terms for these spaces is also included.
引用
收藏
页码:865 / 924
页数:60
相关论文
共 26 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[3]   ON ISOLATED RATIONAL SINGULARITIES OF SURFACES [J].
ARTIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :129-&
[4]   On L-spaces and left-orderable fundamental groups [J].
Boyer, Steven ;
Gordon, Cameron McA ;
Watson, Liam .
MATHEMATISCHE ANNALEN, 2013, 356 (04) :1213-1245
[5]   CALCULATING HEEGAARD-FLOER HOMOLOGY BY COUNTING LATTICE POINTS IN TETRAHEDRA [J].
Can, M. B. ;
Karakurt, C. .
ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) :43-75
[6]  
Dai I, 2017, PREPRINT
[7]   On the Pin(2)-Equivariant Monopole Floer Homology of Plumbed 3-Manifolds [J].
Dai, Irving .
MICHIGAN MATHEMATICAL JOURNAL, 2018, 67 (02) :423-447
[8]  
FINTUSHEL R, 1990, P LOND MATH SOC, V61, P109
[9]   Equivariant aspects of Yang-Mills Floer theory [J].
Froyshov, KA .
TOPOLOGY, 2002, 41 (03) :525-552
[10]   HOMOLOGY COBORDISM GROUP OF HOMOLOGY 3-SPHERES [J].
FURUTA, M .
INVENTIONES MATHEMATICAE, 1990, 100 (02) :339-355