The hydrophobic effect and the influence of solute-solvent attractions

被引:314
作者
Huang, DM [1 ]
Chandler, D [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
D O I
10.1021/jp013289v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have studied the effect of weak solute-solvent attractions on the solvation of nonpolar molecules in water at ambient conditions using an extension and improved parameterization of the theory of solvation due to Lum, Chandler, and Weeks [J. Phys. Chem. B 1999, 103, 4570]. With a reasonable strength of alkane-water interactions, an accurate prediction of the alkane-water interfacial tension is obtained. As previously established for solutes with no attractive interactions with water, the free energy of solvation scales with volume for small solutes and with surface area for large solutes. The crossover to the latter regime occurs on a molecular length scale. It is associated with the formation of a liquid-vaporlike interface, a drying interface, between the large hydrophobic solute and liquid water. In the absence of attractions, this interface typically lies more than one solvent molecular diameter away from the hard sphere surface. With the addition of attractive interactions between water and the hard sphere, the average separation of the interface and solute surface is decreased. For attractive force strengths typical of alkane-water interactions, we show that the drying interface adjacent to a large hydrophobic solute remains largely intact, but is moved into contact with the solute surface. This effect results from the "soft modes" characterizing fluctuations of liquid-vapor interfaces. We show that attractive interactions are of almost no consequence to the temperature dependence of the solvation free energies relevant to protein folding.
引用
收藏
页码:2047 / 2053
页数:7
相关论文
共 38 条
[1]   A "universal" surface area correlation for molecular hydrophobic phenomena [J].
Ashbaugh, HS ;
Kaler, EW ;
Paulaitis, ME .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (39) :9243-9244
[2]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[3]   FREE-ENERGY OF CAVITY FORMATION IN SOLVENT - COMPUTATIONAL, METHODOLOGICAL, AND PHYSICAL ASPECTS [J].
BEUTLER, TC ;
BEGUELIN, DR ;
VANGUNSTEREN, WF .
JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (09) :3787-3793
[4]   Temperature dependence of solvent structure around a hydrophobic solute: A Monte Carlo study of methane in water [J].
Bridgeman, CH ;
Buckingham, AD ;
Skipper, NT .
CHEMICAL PHYSICS LETTERS, 1996, 253 (3-4) :209-215
[5]   GAUSSIAN FIELD MODEL OF FLUIDS WITH AN APPLICATION TO POLYMERIC FLUIDS [J].
CHANDLER, D .
PHYSICAL REVIEW E, 1993, 48 (04) :2898-2905
[6]   VANDERWAALS PICTURE OF LIQUIDS, SOLIDS, AND PHASE-TRANSFORMATIONS [J].
CHANDLER, D ;
WEEKS, JD ;
ANDERSEN, HC .
SCIENCE, 1983, 220 (4599) :787-794
[7]  
Chandler D., 1987, INTRO MODERN STAT ME
[8]   Free energy and entropy for inserting cavities in water: Comparison of Monte Carlo simulation and scaled particle theory results [J].
Floris, FM ;
Selmi, M ;
Tani, A ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (16) :6353-6365
[10]   Enthalpy-entropy and cavity decomposition of alkane hydration free energies: Numerical results and implications for theories of hydrophobic solvation [J].
Gallicchio, E ;
Kubo, MM ;
Levy, RM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (26) :6271-6285