Utilization of the high spatial-frequency component in adaptive beam shaping by using a virtual diagonal phase grating

被引:13
作者
Nakata, Yoshiki [1 ]
Osawa, Kazuhito [1 ]
Miyanaga, Noriaki [1 ,2 ]
机构
[1] Osaka Univ, Inst Laser Engn, 2-6 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Inst Laser Technol, 2-6 Yamadaoka, Suita, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
LASER-BEAM; DESIGN; SYSTEM; ARRAY;
D O I
10.1038/s41598-019-40829-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A square flattop beam is a fundamental shape that is in high demand in various applications, such as ultra-high-power lasers, uniform surface processing and medical engineering. In this experiment, a new and simple scheme of the adaptive beam shaping system to generate a square flattop shape with high uniformity and edge steepness using virtual diagonal phase grating encoded on a spatial-light modulator and a 4f system is proposed. The grating vector k(g) is non-parallel to the normal vectors k(x) and k(y) of the objective beam profile to be extracted; thus, the residual and extracted components hit separately on the Fourier plane of the 4f system. Consequently, using a spatial-frequency filter passing components parallel to k(x) and k(y), the residual components are blocked by the filter without loss of the high spatial-frequency domain of the extracted component. When the width of the filter was 1.0 mm, the edge of the shaped beam increased in height within 20 mu m, which is less than 20% of that obtained with conventional vertical phase grating.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator [J].
Bagnoud, V ;
Zuegel, JD .
OPTICS LETTERS, 2004, 29 (03) :295-297
[2]   Precompensation of gain nonuniformity in a Nd:glass amplifier using a programmable beam-shaping system [J].
Bahk, S. -W. ;
Begishev, I. A. ;
Zuegel, J. D. .
OPTICS COMMUNICATIONS, 2014, 333 :45-52
[3]   A high-resolution, adaptive beam-shaping system for high-power lasers [J].
Bahk, Seung-Whan ;
Fess, Ed ;
Kruschwitz, Brian E. ;
Zuegel, Jonathan D. .
OPTICS EXPRESS, 2010, 18 (09) :9151-9163
[4]   Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields [J].
Bailly-Grandvaux, M. ;
Santos, J. J. ;
Bellei, C. ;
Forestier-Colleoni, P. ;
Fujioka, S. ;
Giuffrida, L. ;
Honrubia, J. J. ;
Batani, D. ;
Bouillaud, R. ;
Chevrot, M. ;
Cross, J. E. ;
Crowston, R. ;
Dorard, S. ;
Dubois, J. -L. ;
Ehret, M. ;
Gregori, G. ;
Hulin, S. ;
Kojima, S. ;
Loyez, E. ;
Marques, J. -R. ;
Morace, A. ;
Nicolai, Ph. ;
Roth, M. ;
Sakata, S. ;
Schaumann, G. ;
Serres, F. ;
Servel, J. ;
Tikhonchuk, V. T. ;
Woolsey, N. ;
Zhang, Z. .
NATURE COMMUNICATIONS, 2018, 9
[5]   Deployment of a spatial light modulator-based beam-shaping system on the OMEGA EP laser [J].
Barczys, M. ;
Bahk, S. -W. ;
Spilatro, M. ;
Coppenbarger, D. ;
Hill, E. ;
Hinterman, T. H. ;
Kidder, R. W. ;
Puth, J. ;
Touris, T. ;
Zuegel, J. D. .
HIGH POWER LASERS FOR FUSION RESEARCH II, 2013, 8602
[6]  
Chen H., 2017, PHYS PLASMAS, V24, P1
[7]   High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics [J].
Fujioka, S. ;
Zhang, Z. ;
Yamamoto, N. ;
Ohira, S. ;
Fujii, Y. ;
Ishihara, K. ;
Johzaki, T. ;
Sunahara, A. ;
Arikawa, Y. ;
Shigemori, K. ;
Hironaka, Y. ;
Sakawa, Y. ;
Nakata, Y. ;
Kawanaka, J. ;
Nagatomo, H. ;
Shiraga, H. ;
Miyanaga, N. ;
Norimatsu, T. ;
Nishimura, H. ;
Azechi, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (12)
[8]   Holography using pixelated spatial light modulators-part 1: theory and basic considerations [J].
Haist, Tobias ;
Osten, Wolfgang .
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2015, 14 (04)
[9]   RESHAPING COLLIMATED LASER-BEAMS WITH GAUSSIAN PROFILE TO UNIFORM PROFILES [J].
HAN, CY ;
ISHII, Y ;
MURATA, K .
APPLIED OPTICS, 1983, 22 (22) :3644-3647
[10]  
Hendriks A., 2019, P SOC PHOTO-OPT INS, V8490