Rapid Generation of Long Noncoding RNA Knockout Mice Using CRISPR/Cas9 Technology

被引:6
作者
Hansmeier, Nils R. [1 ,2 ]
Widdershooven, Pia J. M. [1 ]
Khani, Sajjad [1 ,2 ,3 ]
Kornfeld, Jan-Wilhelm [1 ,2 ,4 ]
机构
[1] Max Planck Inst Metab Res, Gleueler Str 50, D-50931 Cologne, Germany
[2] Univ Cologne, Med Fac, Cologne Cluster Excellence Cellular Stress Respon, Joseph Stelzmann Str 26, D-50931 Cologne, Germany
[3] Ludwig Maximilian Univ Munich, Inst Prophylaxis & Epidemiol Cardiovasc Dis IPEK, D-80336 Munich, Germany
[4] Univ Southern Denmark, Dept Biochem & Mol Biol, Funct Genom & Metab Unit, Campusvej 55, DK-5230 Odense M, Denmark
基金
欧洲研究理事会;
关键词
long noncoding RNA; clustered regularly interspaced short palindromic repeats (CRISPR); Cas9-mediated genome engineering; knockout mice; GENOME; LNCRNA; IDENTIFICATION; ANNOTATION; LANDSCAPE; REGULATOR; EVOLUTION; DELETION; ELEMENTS;
D O I
10.3390/ncrna5010012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, long noncoding RNAs (lncRNAs) have emerged as multifaceted regulators of gene expression, controlling key developmental and disease pathogenesis processes. However, due to the paucity of lncRNA loss-of-function mouse models, key questions regarding the involvement of lncRNAs in organism homeostasis and (patho)-physiology remain difficult to address experimentally in vivo. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 platform provides a powerful genome-editing tool and has been successfully applied across model organisms to facilitate targeted genetic mutations, includingCaenorhabditis elegans,Drosophila melanogaster,Danio rerioandMus musculus. However, just a few lncRNA-deficient mouse lines have been created using CRISPR/Cas9-mediated genome engineering, presumably due to the need for lncRNA-specific gene targeting strategies considering the absence of open-reading frames in these loci. Here, we describe a step-wise procedure for the generation and validation of lncRNA loss-of-function mouse models using CRISPR/Cas9-mediated genome engineering. In a proof-of-principle approach, we generated mice deficient for the liver-enriched lncRNAGm15441, which we found downregulated during development of metabolic disease and induced during the feeding/fasting transition. Further, we discuss guidelines for the selection of lncRNA targets and provide protocols for in vitro single guide RNA (sgRNA) validation, assessment of in vivo gene-targeting efficiency and knockout confirmation. The procedure from target selection to validation of lncRNA knockout mouse lines can be completed in 18-20 weeks, of which <10 days hands-on working time is required.
引用
收藏
页数:12
相关论文
共 34 条
[21]   Discovery and annotation of long noncoding RNAs [J].
Mattick, John S. ;
Rinn, John L. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (01) :5-7
[22]  
Moreno-Mateos MA, 2015, NAT METHODS, V12, P982, DOI [10.1038/nmeth.3543, 10.1038/NMETH.3543]
[23]   Identification of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 as a negative regulator of thioredoxin function and expression [J].
Nishiyama, A ;
Matsui, M ;
Iwata, S ;
Hirota, K ;
Masutani, H ;
Nakamura, H ;
Takagi, Y ;
Sono, H ;
Gon, Y ;
Yodoi, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (31) :21645-21650
[24]   Unlinking an lncRNA from Its Associated cis Element [J].
Paralkar, Vikram R. ;
Taborda, Cristian C. ;
Huang, Peng ;
Yao, Yu ;
Kossenkov, Andrew V. ;
Prasad, Rishi ;
Luan, Jing ;
Davies, James O. J. ;
Hughes, Jim R. ;
Hardison, Ross C. ;
Blobel, Gerd A. ;
Weiss, Mitchell J. .
MOLECULAR CELL, 2016, 62 (01) :104-110
[25]   Genome engineering using the CRISPR-Cas9 system [J].
Ran, F. Ann ;
Hsu, Patrick D. ;
Wright, Jason ;
Agarwala, Vineeta ;
Scott, David A. ;
Zhang, Feng .
NATURE PROTOCOLS, 2013, 8 (11) :2281-2308
[26]   Precision genome editing in the CRISPR era [J].
Salsman, Jayme ;
Dellaire, Graham .
BIOCHEMISTRY AND CELL BIOLOGY, 2017, 95 (02) :187-201
[27]   LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat [J].
Schmidt, Elena ;
Dhaouadi, Ines ;
Gaziano, Isabella ;
Oliverio, Matteo ;
Klemm, Paul ;
Awazawa, Motoharu ;
Mitterer, Gerfried ;
Fernandez-Rebollo, Eduardo ;
Pradas-Juni, Marta ;
Wagner, Wolfgang ;
Hammerschmidt, Philipp ;
Loureiro, Rute ;
Kiefer, Christoph ;
Hansmeier, Nils R. ;
Khani, Sajjad ;
Bergami, Matteo ;
Heine, Markus ;
Ntini, Evgenia ;
Frommolt, Peter ;
Zentis, Peter ;
Orom, Ulf Andersson ;
Heeren, Joerg ;
Blueher, Matthias ;
Bilban, Martin ;
Kornfeld, Jan-Wilhelm .
NATURE COMMUNICATIONS, 2018, 9
[28]   CRISPR/Cas9-mediated deletion of lncRNA Gm26878 in the distant Foxf1 enhancer region [J].
Szafranski, Przemyslaw ;
Karolak, Justyna A. ;
Lanza, Denise ;
Gajecka, Marzena ;
Heaney, Jason ;
Stankiewicz, Pawel .
MAMMALIAN GENOME, 2017, 28 (7-8) :275-282
[29]   A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells [J].
Tichon, Ailone ;
Gil, Noa ;
Lubelsky, Yoav ;
Solomon, Tal Havkin ;
Lemze, Doron ;
Itzkovitz, Shalev ;
Stern-Ginossar, Noam ;
Ulitsky, Igor .
NATURE COMMUNICATIONS, 2016, 7
[30]   Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB [J].
Tripathi, Vidisha ;
Shen, Zhen ;
Chakraborty, Arindam ;
Giri, Sumanprava ;
Freier, Susan M. ;
Wu, Xiaolin ;
Zhang, Yongqing ;
Gorospe, Myriam ;
Prasanth, Supriya G. ;
Lal, Ashish ;
Prasanth, Kannanganattu V. .
PLOS GENETICS, 2013, 9 (03)