Rank frequencies for quadratic twists of elliptic curves

被引:25
作者
Rubin, K [1 ]
Silverberg, A
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1080/10586458.2001.10504676
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give explicit examples of infinite families of elliptic curves E over Q with (nonconstant) quadratic twists over Q(t) of rank at least 2 and 3. We recover some results announced by Mestre, as well as some additional families. Suppose D is a squarefree integer and let r(E)(D) denote the rank of the quadratic twist of E by D. We apply results of Stewart and Top to our examples to obtain results of the form #{D : \D\ < x, r(E)(D) greater than or equal to 2} much greater than x(1/3), #{D : \D\ < x, r(E)(D) greater than or equal to 3} much greater than x(1/6) for all sufficiently large x.
引用
收藏
页码:559 / 569
页数:11
相关论文
共 8 条
  • [1] CAPORASO L, 1995, PROG MATH, V129, P13
  • [2] Gouvea F., 1991, J AM MATH SOC, V4, P1, DOI [DOI 10.1090/S0894-0347-1991-1080648-7, 10.1090/S0894-0347-1991-1080648-7]
  • [3] Large torsion subgroups of split Jacobians of curves of genus two or three
    Howe, EW
    Leprévost, F
    Poonen, B
    [J]. FORUM MATHEMATICUM, 2000, 12 (03) : 315 - 364
  • [4] On the rank of some families of elliptic curves with given modular invariant
    Mestre, JF
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 763 - 764
  • [5] MESTRE JF, 1992, CR ACAD SCI I-MATH, V314, P919
  • [6] ROHRLICH DE, 1993, COMPOS MATH, V87, P119
  • [7] SILVERMAN JH, 1983, J REINE ANGEW MATH, V342, P197
  • [8] ON RANKS OF TWISTS OF ELLIPTIC-CURVES AND POWER-FREE VALUES OF BINARY FORMS
    STEWART, CL
    TOP, J
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (04) : 943 - 973