Recurrence of a class of quantum Markov chains on trees

被引:8
作者
Barhoumi, Abdessatar [1 ,3 ]
Souissi, Abdessatar [2 ,3 ,4 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Qassim Univ, Coll Business Management, Dept Accounting, Arrass, Saudi Arabia
[3] Univ Carthage, Math Phys Quantum Modeling & Mech Design, LR18ES45,Av Republ, Carthage 1054, Tunisia
[4] Univ Carthage, Preparatory Inst Sci & Tech Studies, Dept Math, Av Republ, Carthage 1054, Tunisia
关键词
Quantum Markov chains; Cayley trees; Recurrence; Phase transition; RANDOM-WALKS; BINARY INTERACTIONS; COMPETING TERNARY; GIBBS MEASURES; MODELS; STATES;
D O I
10.1016/j.chaos.2022.112644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of recurrence for quantum Markov chains on trees (QMCT), is more subtle than for 1D quantum Markov chains (QMC); it involves infinitely many rays due to the exponential growth of ramifications on the Cayley trees and their relevant constraints. We study criteria for recurrence of QMCT based on the correlations functions and boundary conditions. These represent a bridge between recurrence and phase transitions. Furthermore, we illustrate our results through an Ising model with competing interactions.
引用
收藏
页数:6
相关论文
共 39 条
[1]  
Accardi L., 1989, Quantum probability and applications IV. Proceedings of the Year of Quantum Probability, P73
[2]  
Accardi L., 1974, PROC INT SCH MATH PH, P268
[3]  
Accardi L., 1991, Quantum Markov Chains: The recurrence problem, QP III, P63
[4]   A Markov-Dobrushin Inequality for Quantum Channels [J].
Accardi, Luigi ;
Lu, Yun Gang ;
Souissi, Abdessatar .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2021, 28 (04)
[5]   Quantum Markov chains: A unification approach [J].
Accardi, Luigi ;
Souissi, Abdessatar ;
Soueidy, El Gheteb .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (02)
[6]   CONSTRUCTION OF A NEW CLASS OF QUANTUM MARKOV FIELDS [J].
Accardi, Luigi ;
Mukhamedov, Farrukh ;
Souissi, Abdessatar .
ADVANCES IN OPERATOR THEORY, 2016, 1 (02) :206-218
[7]   ON QUANTUM MARKOV CHAINS ON CAYLEY TREE I: UNIQUENESS OF THE ASSOCIATED CHAIN WITH XY-MODEL ON THE CAYLEY TREE OF ORDER TWO [J].
Accardi, Luigi ;
Mukhamedov, Farrukh ;
Saburov, Mansoor .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 14 (03) :443-463
[8]   On Quantum Markov Chains on Cayley Tree II: Phase Transitions for the Associated Chain with XY-Model on the Cayley Tree of Order Three [J].
Accardi, Luigi ;
Mukhamedov, Farrukh ;
Saburov, Mansoor .
ANNALES HENRI POINCARE, 2011, 12 (06) :1109-1144
[9]  
[Anonymous], 1992, J. Theor. Probab, DOI DOI 10.1007/BF01060433
[10]   Open Quantum Random Walks [J].
Attal, S. ;
Petruccione, F. ;
Sabot, C. ;
Sinayskiy, I. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (04) :832-852