ALTERNATING DIRECTION METHOD FOR A CLASS OF CONSTRAINED MATRIX APPROXIMATION PROBLEMS

被引:0
作者
Li, Qingna [1 ]
机构
[1] Beijing Inst Technol, Sch Math, Beijing 100081, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2012年 / 8卷 / 04期
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
matrix norm approximation; spectral norm function; alternating direction method; Moreau-Yosida regularization; POLYNOMIALS; ALGORITHM;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the matrix approximation problems under spectral norm, with linear and positive semidefinite constraints. The difficulty in solving such problems lies in the presence of the spectral norm and the positive semidefinite constraint. Based on the recent progress in matrix optimization problems, especially in the Moreau-Yosida regularization of the spectral norm function, we are now equipped with more tools to handle the spectral norm. We apply the alternating direction method to solve it. Extensive numerical results for the fastest distributed linear averaging problem and the nearest correlation matrix problem are presented to confirm the efficiency of the proposed method.
引用
收藏
页码:765 / 778
页数:14
相关论文
共 38 条
[1]   Least-squares covariance matrix adjustment [J].
Boyd, S ;
Xiao, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) :532-546
[2]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[3]  
Boyd S, 2004, SIAM REV, V46, P667, DOI [10.1137/S0036144503423264, 10.1137/s0036144503423264]
[4]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[5]  
Cheney E., 1982, INTRO APPROXIMATION
[6]  
Ding C., 2010, TECHNICAL REPORT
[7]  
Ding C., SPECTRAL OPERA UNPUB
[8]  
Duchi J., 2008, ICML 08, P272
[9]  
GAO Y, 2010, SIAM J MATRIX ANAL A, V31, P1423
[10]   GMRES/CR AND ARNOLDI-LANCZOS AS MATRIX APPROXIMATION-PROBLEMS [J].
GREENBAUM, A ;
TREFETHEN, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :359-368