Summarizing and correcting the GC content bias in high-throughput sequencing

被引:614
作者
Benjamini, Yuval [1 ]
Speed, Terence P. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HUMAN GENOME; ILLUMINA; ALIGNMENT;
D O I
10.1093/nar/gks001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GC content bias describes the dependence between fragment count (read coverage) and GC content found in Illumina sequencing data. This bias can dominate the signal of interest for analyses that focus on measuring fragment abundance within a genome, such as copy number estimation (DNA-seq). The bias is not consistent between samples; and there is no consensus as to the best methods to remove it in a single sample. We analyze regularities in the GC bias patterns, and find a compact description for this unimodal curve family. It is the GC content of the full DNA fragment, not only the sequenced read, that most influences fragment count. This GC effect is unimodal: both GC-rich fragments and AT-rich fragments are underrepresented in the sequencing results. This empirical evidence strengthens the hypothesis that PCR is the most important cause of the GC bias. We propose a model that produces predictions at the base pair level, allowing strand-specific GC-effect correction regardless of the downstream smoothing or binning. These GC modeling considerations can inform other high-throughput sequencing analyses such as ChIP-seq and RNA-seq.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Identifying group-specific primers for environmental Heterolobosa by high-throughput sequencing [J].
Delafont, Vincent ;
Mercier, Anne ;
Barrouilhet, Stephanie ;
Mollichella, Marie-Laure ;
Herbelin, Pascaline ;
Hechard, Yann .
MICROBIAL BIOTECHNOLOGY, 2022, 15 (09) :2476-2487
[42]   Comparison of high-throughput sequencing methods for bacterial microbiota profiling in catfish aquaculture [J].
Older, Caitlin E. ;
Yamamoto, Fernando Y. ;
Griffin, Matt J. ;
Ware, Cynthia ;
Heckman, Taylor I. ;
Soto, Esteban ;
Bosworth, Brian G. ;
Waldbieser, Geoffrey C. .
NORTH AMERICAN JOURNAL OF AQUACULTURE, 2024, 86 (01) :39-54
[43]   High-throughput sequencing and automated analysis of immunoglobulin genes: Life without a template [J].
Michaeli, Miri ;
Barak, Michal ;
Hazanov, Lena ;
Noga, Hila ;
Mehr, Ramit .
PROCEEDINGS IWBBIO 2013: INTERNATIONAL WORK-CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, 2013, :19-26
[44]   The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy [J].
Gruening, Bjoern A. ;
Fallmann, Joerg ;
Yusuf, Dilmurat ;
Will, Sebastian ;
Erxleben, Anika ;
Eggenhofer, Florian ;
Houwaart, Torsten ;
Batut, Berenice ;
Videm, Pavankumar ;
Bagnacani, Andrea ;
Wolfien, Markus ;
Lott, Steffen C. ;
Hoogstrate, Youri ;
Hess, Wolfgang R. ;
Wolkenhauer, Olaf ;
Hoffmann, Steve ;
Akalin, Altuna ;
Ohler, Uwe ;
Stadler, Peter F. ;
Backofen, Rolf .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W560-W566
[45]   Quality Assessment of High-Throughput DNA Sequencing Data via Range Analysis [J].
Fotouhi, Ali ;
Majidi, Mina ;
Kulekci, M. Oguzhan .
BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2018, PT I, 2018, 10813 :429-438
[46]   Chinese Fir Breeding in the High-Throughput Sequencing Era: Insights from SNPs [J].
Zheng, Huiquan ;
Hu, Dehuo ;
Wei, Ruping ;
Yan, Shu ;
Wang, Runhui .
FORESTS, 2019, 10 (08)
[47]   High-Throughput Sequencing for the Detection of Viruses in Grapevine: Performance Analysis and Best Practices [J].
Stevens, Kristian A. ;
Al Rwahnih, Maher .
VIRUSES-BASEL, 2024, 16 (12)
[48]   High-throughput total RNA sequencing in single cells using VASA-seq [J].
Salmen, Fredrik ;
De Jonghe, Joachim ;
Kaminski, Tomasz S. ;
Alemany, Anna ;
Parada, Guillermo E. ;
Verity-Legg, Joe ;
Yanagida, Ayaka ;
Kohler, Timo N. ;
Battich, Nicholas ;
van den Brekel, Floris ;
Ellermann, Anna L. ;
Martinez Arias, Alfonso ;
Nichols, Jennifer ;
Hemberg, Martin ;
Hollfelder, Florian ;
van Oudenaarden, Alexander .
NATURE BIOTECHNOLOGY, 2022, 40 (12) :1780-1793
[49]   A Novel Approach for Transcription Factor Analysis Using SELEX with High-Throughput Sequencing (TFAST) [J].
Reiss, Daniel J. ;
Howard, Frederick M. ;
Mobley, Harry L. T. .
PLOS ONE, 2012, 7 (08)
[50]   Discovery of Viruses and Virus-Like Pathogens in Pistachio using High-Throughput Sequencing [J].
Al Rwahnih, Maher ;
Rowhani, Adib ;
Westrick, Nathaniel ;
Stevens, Kristian ;
Diaz-Lara, Alfredo ;
Trouillas, Florent P. ;
Preece, John ;
Kallsen, Craig ;
Farrar, Kristen ;
Golino, Deborah .
PLANT DISEASE, 2018, 102 (07) :1419-1425