Summarizing and correcting the GC content bias in high-throughput sequencing

被引:610
作者
Benjamini, Yuval [1 ]
Speed, Terence P. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HUMAN GENOME; ILLUMINA; ALIGNMENT;
D O I
10.1093/nar/gks001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GC content bias describes the dependence between fragment count (read coverage) and GC content found in Illumina sequencing data. This bias can dominate the signal of interest for analyses that focus on measuring fragment abundance within a genome, such as copy number estimation (DNA-seq). The bias is not consistent between samples; and there is no consensus as to the best methods to remove it in a single sample. We analyze regularities in the GC bias patterns, and find a compact description for this unimodal curve family. It is the GC content of the full DNA fragment, not only the sequenced read, that most influences fragment count. This GC effect is unimodal: both GC-rich fragments and AT-rich fragments are underrepresented in the sequencing results. This empirical evidence strengthens the hypothesis that PCR is the most important cause of the GC bias. We propose a model that produces predictions at the base pair level, allowing strand-specific GC-effect correction regardless of the downstream smoothing or binning. These GC modeling considerations can inform other high-throughput sequencing analyses such as ChIP-seq and RNA-seq.
引用
收藏
页数:14
相关论文
共 50 条
[31]   High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk Deposits [J].
Maciejewska, Marta ;
Calusinska, Magdalena ;
Cornet, Luc ;
Adam, Delphine ;
Pessi, Igor S. ;
Malchair, Sandrine ;
Delfosse, Philippe ;
Baurain, Denis ;
Barton, Hazel A. ;
Carnol, Monique ;
Rigali, Sebastien .
ANTIBIOTICS-BASEL, 2018, 7 (02)
[32]   Methods for the detection and assembly of novel sequence in high-throughput sequencing data [J].
Holtgrewe, Manuel ;
Kuchenbecker, Leon ;
Reinert, Knut .
BIOINFORMATICS, 2015, 31 (12) :1904-1912
[33]   High-Throughput Sequencing Reveals New Viroid Species in Opuntia in Mexico [J].
Ortega-Acosta, Candelario ;
Ochoa-Martinez, Daniel L. ;
Rodriguez-Leyva, Esteban .
VIRUSES-BASEL, 2024, 16 (08)
[34]   A Multicenter Study To Evaluate the Performance of High-Throughput Sequencing for Virus Detection [J].
Khan, Arifa S. ;
Ng, Siemon H. S. ;
Vandeputte, Olivier ;
Aljanahi, Aisha ;
Deyati, Avisek ;
Cassart, Jean-Pol ;
Charlebois, Robert L. ;
Taliaferro, Lanyn P. .
MSPHERE, 2017, 2 (05)
[35]   High-Throughput Multiplex Sequencing to Discover Copy Number Variants in Drosophila [J].
Daines, Bryce ;
Wang, Hui ;
Li, Yumei ;
Han, Yi ;
Gibbs, Richard ;
Chen, Rui .
GENETICS, 2009, 182 (04) :935-941
[36]   Statistical framework for calling allelic imbalance in high-throughput sequencing data [J].
Buyan, Andrey ;
Meshcheryakov, Georgy ;
Safronov, Viacheslav ;
Abramov, Sergey ;
Boytsov, Alexandr ;
Nozdrin, Vladimir ;
Baulin, Eugene F. ;
Kolmykov, Semyon ;
Vierstra, Jeff ;
Kolpakov, Fedor ;
Makeev, Vsevolod J. ;
Kulakovskiy, Ivan V. .
NATURE COMMUNICATIONS, 2025, 16 (01)
[37]   High-Throughput sequencing: A tool to curb banana diseases of quarantine importance [J].
Singh, Prachi ;
Bhargava, Priya ;
Bhaskar, Sawant Shraddha ;
Narware, Jeetu ;
Nandni, Sudha ;
Pitambara ;
Dev, Devanshu .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2025,
[38]   Rapid identification of non-human sequences in high-throughput sequencing datasets [J].
Bhaduri, Aparna ;
Qu, Kun ;
Lee, Carolyn S. ;
Ungewickell, Alexander ;
Khavari, Paul A. .
BIOINFORMATICS, 2012, 28 (08) :1174-1175
[39]   Haplotyping germline and cancer genomes with high-throughput linked-read sequencing [J].
Zheng, Grace X. Y. ;
Lau, Billy T. ;
Schnall-Levin, Michael ;
Jarosz, Mirna ;
Bell, John M. ;
Hindson, Christopher M. ;
Kyriazopoulou-Panagiotopoulou, Sofia ;
Masquelier, Donald A. ;
Merrill, Landon ;
Terry, Jessica M. ;
Mudivarti, Patrice A. ;
Wyatt, Paul W. ;
Bharadwaj, Rajiv ;
Makarewicz, Anthony J. ;
Li, Yuan ;
Belgrader, Phillip ;
Price, Andrew D. ;
Lowe, Adam J. ;
Marks, Patrick ;
Vurens, Gerard M. ;
Hardenbol, Paul ;
Montesclaros, Luz ;
Luo, Melissa ;
Greenfield, Lawrence ;
Wong, Alexander ;
Birch, David E. ;
Short, Steven W. ;
Bjornson, Keith P. ;
Patel, Pranav ;
Hopmans, Erik S. ;
Wood, Christina ;
Kaur, Sukhvinder ;
Lockwood, Glenn K. ;
Stafford, David ;
Delaney, Joshua P. ;
Wu, Indira ;
Ordonez, Heather S. ;
Grimes, Susan M. ;
Greer, Stephanie ;
Lee, Josephine Y. ;
Belhocine, Kamila ;
Giorda, Kristina M. ;
Heaton, William H. ;
McDermott, Geoffrey P. ;
Bent, Zachary W. ;
Meschi, Francesca ;
Kondov, Nikola O. ;
Wilson, Ryan ;
Bernate, Jorge A. ;
Gauby, Shawn .
NATURE BIOTECHNOLOGY, 2016, 34 (03) :303-+
[40]   Identifying group-specific primers for environmental Heterolobosa by high-throughput sequencing [J].
Delafont, Vincent ;
Mercier, Anne ;
Barrouilhet, Stephanie ;
Mollichella, Marie-Laure ;
Herbelin, Pascaline ;
Hechard, Yann .
MICROBIAL BIOTECHNOLOGY, 2022, 15 (09) :2476-2487