Summarizing and correcting the GC content bias in high-throughput sequencing

被引:613
作者
Benjamini, Yuval [1 ]
Speed, Terence P. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
HUMAN GENOME; ILLUMINA; ALIGNMENT;
D O I
10.1093/nar/gks001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GC content bias describes the dependence between fragment count (read coverage) and GC content found in Illumina sequencing data. This bias can dominate the signal of interest for analyses that focus on measuring fragment abundance within a genome, such as copy number estimation (DNA-seq). The bias is not consistent between samples; and there is no consensus as to the best methods to remove it in a single sample. We analyze regularities in the GC bias patterns, and find a compact description for this unimodal curve family. It is the GC content of the full DNA fragment, not only the sequenced read, that most influences fragment count. This GC effect is unimodal: both GC-rich fragments and AT-rich fragments are underrepresented in the sequencing results. This empirical evidence strengthens the hypothesis that PCR is the most important cause of the GC bias. We propose a model that produces predictions at the base pair level, allowing strand-specific GC-effect correction regardless of the downstream smoothing or binning. These GC modeling considerations can inform other high-throughput sequencing analyses such as ChIP-seq and RNA-seq.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Efficient digest of high-throughput sequencing data in a reproducible report [J].
Zhang, Zhe ;
Leipzig, Jeremy ;
Sasson, Ariella ;
Yu, Angela M. ;
Perin, Juan C. ;
Xie, Hongbo M. ;
Sarmady, Mahdi ;
Warren, Patrick V. ;
White, Peter S. .
BMC BIOINFORMATICS, 2013, 14
[22]   miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments [J].
Hackenberg, Michael ;
Rodriguez-Ezpeleta, Naiara ;
Aransay, Ana M. .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W132-W138
[23]   Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis [J].
Schwartz, Michael H. ;
Wang, Haipeng ;
Pan, Jessica N. ;
Clark, Wesley C. ;
Cui, Steven ;
Eckwahl, Matthew J. ;
Pan, David W. ;
Parisien, Marc ;
Owens, Sarah M. ;
Cheng, Brian L. ;
Martinez, Kristina ;
Xu, Jinbo ;
Chang, Eugene B. ;
Pan, Tao ;
Eren, A. Murat .
NATURE COMMUNICATIONS, 2018, 9
[24]   Discovery of tandem and interspersed segmental duplications using high-throughput sequencing [J].
Soylev, Arda ;
Thong Minh Le ;
Amini, Hajar ;
Alkan, Can ;
Hormozdiari, Fereydoun .
BIOINFORMATICS, 2019, 35 (20) :3923-3930
[25]   High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk Deposits [J].
Maciejewska, Marta ;
Calusinska, Magdalena ;
Cornet, Luc ;
Adam, Delphine ;
Pessi, Igor S. ;
Malchair, Sandrine ;
Delfosse, Philippe ;
Baurain, Denis ;
Barton, Hazel A. ;
Carnol, Monique ;
Rigali, Sebastien .
ANTIBIOTICS-BASEL, 2018, 7 (02)
[26]   High-Throughput Identification of Adapters in Single-Read Sequencing Data [J].
Mohideen, Asan M. S. H. ;
Johansen, Steinar D. ;
Babiak, Igor .
BIOMOLECULES, 2020, 10 (06) :1-12
[27]   Identifying micro-inversions using high-throughput sequencing reads [J].
He, Feifei ;
Li, Yang ;
Tang, Yu-Hang ;
Ma, Jian ;
Zhu, Huaiqiu .
BMC GENOMICS, 2016, 17
[28]   A Primer on the Analysis of High-Throughput Sequencing Data for Detection of Plant Viruses [J].
Kutnjak, Denis ;
Tamisier, Lucie ;
Adams, Ian ;
Boonham, Neil ;
Candresse, Thierry ;
Chiumenti, Michela ;
De Jonghe, Kris ;
Kreuze, Jan F. ;
Lefebvre, Marie ;
Silva, Goncalo ;
Malapi-Wight, Martha ;
Margaria, Paolo ;
Plesko, Irena Mavriric ;
McGreig, Sam ;
Miozzi, Laura ;
Remenant, Benoit ;
Reynard, Jean-Sebastien ;
Rollin, Johan ;
Rott, Mike ;
Schumpp, Olivier ;
Massart, Sebastien ;
Haegeman, Annelies .
MICROORGANISMS, 2021, 9 (04)
[29]   HTSlib: C library for reading/writing high-throughput sequencing data [J].
Bonfield, James K. ;
Marshall, John ;
Danecek, Petr ;
Li, Heng ;
Ohan, Valeriu ;
Whitwham, Andrew ;
Keane, Thomas ;
Davies, Robert M. .
GIGASCIENCE, 2021, 10 (02)
[30]   High-throughput sequencing in mutation detection: A new generation of genotoxicity tests? [J].
Maslov, Alexander Y. ;
Quispe-Tintaya, Wilber ;
Gorbacheval, Tatyana ;
White, Ryan R. ;
Vijg, Jan .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2015, 776 :136-143