Channel density distributions explain spiking variability in the globus pallidus:: A combined physiology and computer simulation database approach

被引:87
作者
Guenay, Cengiz [1 ]
Edgerton, Jeremy R. [1 ]
Jaeger, Dieter [1 ]
机构
[1] Emory Univ, Dept Biol, Atlanta, GA 30322 USA
关键词
basal ganglia; model; excitability; ion channel; in vitro; neuron;
D O I
10.1523/JNEUROSCI.4198-07.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Globus pallidus (GP) neurons recorded in brain slices show significant variability in intrinsic electrophysiological properties. To investigate how this variability arises, we manipulated the biophysical properties of GP neurons using computer simulations. Specifically, we created a GP neuron model database with 100,602 models that had varying densities of nine membrane conductances centered on a hand-tuned model that replicated typical physiological data. To test the hypothesis that the experimentally observed variability can be attributed to variations in conductance densities, we compared our model database results to a physiology database of 146 slice recordings. The electrophysiological properties of generated models and recordings were assessed with identical current injection protocols and analyzed with a uniform set of measures, allowing a systematic analysis of the effects of varying voltage-gated and calcium-gated conductance densities on the measured properties and a detailed comparison between models and recordings. Our results indicated that most of the experimental variability could be matched by varying conductance densities, which we confirmed with additional partial block experiments. Further analysis resulted in two key observations: (1) each voltage-gated conductance had effects on multiple measures such as action potential waveform and spontaneous or stimulated spike rates; and (2) the effect of each conductance was highly dependent on the background context of other conductances present. In some cases, such interactions could reverse the effect of the density of one conductance on important excitability measures. This context dependence of conductance density effects is important to understand drug and neuromodulator effects that work by affecting ion channels.
引用
收藏
页码:7476 / 7491
页数:16
相关论文
共 70 条
[1]   Balancing homeostasis and learning in neural circuits [J].
Abbott, LF .
ZOOLOGY, 2003, 106 (04) :365-371
[2]   Complex parameter landscape for a complex neuron model [J].
Achard, Pablo ;
De Schutter, Erik .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) :794-804
[3]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[4]   Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons [J].
Baranauskas, G ;
Tkatch, T ;
Nagata, K ;
Yeh, JZ ;
Surmeier, DJ .
NATURE NEUROSCIENCE, 2003, 6 (03) :258-266
[5]  
Baranauskas G, 1999, J NEUROSCI, V19, P6394
[6]   THE PRIMATE SUBTHALAMIC NUCLEUS .2. NEURONAL-ACTIVITY IN THE MPTP MODEL OF PARKINSONISM [J].
BERGMAN, H ;
WICHMANN, T ;
KARMON, B ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 72 (02) :507-520
[7]   EXPLORING PARAMETER SPACE IN DETAILED SINGLE NEURON MODELS - SIMULATIONS OF THE MITRAL AND GRANULE CELLS OF THE OLFACTORY-BULB [J].
BHALLA, US ;
BOWER, JM .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (06) :1948-1965
[8]   Nondopaminergic mechanisms in levodopa-induced dyskinesia [J].
Brotchie, JA .
MOVEMENT DISORDERS, 2005, 20 (08) :919-931
[9]   Modulation and genetic identification of the M channel [J].
Brown, BS ;
Yu, SP .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 73 (2-4) :135-166
[10]   Animal-to-animal variability in motor pattern production in adults and during growth [J].
Bucher, D ;
Prinz, AA ;
Marder, E .
JOURNAL OF NEUROSCIENCE, 2005, 25 (07) :1611-1619