Vibration of Diatomic System in One-dimensional Nanomaterials

被引:0
作者
Lu Jun [1 ]
机构
[1] Beijing Union Univ, Dept Foundat Sci, Beijing 100101, Peoples R China
来源
RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3 | 2011年 / 55-57卷
关键词
diatomic system; one-dimensional nanomaterial; vibration; matrix element; MORSE OSCILLATOR; MECHANICS; MODES;
D O I
10.4028/www.scientific.net/AMM.55-57.545
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
By means of the hypergeometric series method, the explicit expressions of energy eigenvalues and eigenfunctions of bound states for a diatomic system with a hyperbolic potential function are obtained in the one-dimensional nanomaterials. The eigenfunctions of a one-dimensional diatomic system, expressed in terms of the Jacobi polynomial, are employed as an orthonormal basis set, and the analytic expressions of matrix elements for position and momentum operators are given in a closed form.
引用
收藏
页码:545 / 549
页数:5
相关论文
共 12 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Conditions of near-zero dispersion of defect modes in one-dimensional photonic crystals containing negative-index materials [J].
Chen, YH ;
Dong, JW ;
Wang, HZ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (04) :776-781
[3]  
Lu FL, 2005, CHINESE PHYS, V14, P463, DOI 10.1088/1009-1963/14/3/005
[4]   Diatomic molecules according to the wave mechanics. II. Vibrational levels [J].
Morse, PM .
PHYSICAL REVIEW, 1929, 34 (01) :57-64
[5]  
Murrell J.N., 1984, MOL POTENTIAL ENERGY
[6]   Field-emission properties of molybdenum disulfide nanotubes [J].
Nemanic, V ;
Zumer, M ;
Zajec, B ;
Pahor, J ;
Remskar, M ;
Mrzel, A ;
Panjan, P ;
Mihailovic, D .
APPLIED PHYSICS LETTERS, 2003, 82 (25) :4573-4575
[7]   MORSE OSCILLATOR TRANSITION-PROBABILITIES FOR MOLECULAR BOND MODES [J].
SAGE, ML .
CHEMICAL PHYSICS, 1978, 35 (03) :375-380
[8]   THE ENERGY EIGENVALUES OF HYPERBOLICAL POTENTIAL FUNCTIONS [J].
SCHIOBERG, D .
MOLECULAR PHYSICS, 1986, 59 (05) :1123-1137
[9]   Exploring the separability of the three-body Coulomb problem in hyperspherical elliptic coordinates [J].
Tolstikhin, OI ;
Matsuzawa, M .
PHYSICAL REVIEW A, 2001, 63 (06)
[10]   ANALYTIC QUANTUM-MECHANICS OF MORSE OSCILLATOR [J].
WALLACE, R .
CHEMICAL PHYSICS LETTERS, 1976, 37 (01) :115-118