Pyphe, a python']python toolbox for assessing microbial growth and cell viability in high-throughput colony screens

被引:26
|
作者
Kamrad, Stephan [1 ,2 ]
Rodriguez-Lopez, Maria [1 ]
Cotobal, Cristina [1 ]
Correia-Melo, Clara [2 ]
Ralser, Markus [2 ,3 ]
Baehler, Juerg [1 ]
机构
[1] UCL, Inst Hlth Ageing, Dept Genet Evolut & Environm, London, England
[2] Francis Crick Inst, Mol Biol Metab Lab, London, England
[3] Charite Univ Med Berlin, Dept Biochem, Berlin, Germany
来源
ELIFE | 2020年 / 9卷
基金
英国惠康基金; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
YEAST; ACCURATE; MUTANTS;
D O I
10.7554/eLife.55160
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial fitness screens are a key technique in functional genomics. We present an allin-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. Pyphe is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply pyphe to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. Pyphe is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [31] pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods
    Abdelkader Behdenna
    Maximilien Colange
    Julien Haziza
    Aryo Gema
    Guillaume Appé
    Chloé-Agathe Azencott
    Akpéli Nordor
    BMC Bioinformatics, 24
  • [32] A Novel Multiplex Cell Viability Assay for High-Throughput RNAi Screening
    Gilbert, Daniel F.
    Erdmann, Gerrit
    Zhang, Xian
    Fritzsche, Anja
    Demir, Kubilay
    Jaedicke, Andreas
    Muehlenberg, Katja
    Wanker, Erich E.
    Boutros, Michael
    PLOS ONE, 2011, 6 (12):
  • [33] High-throughput platform for screening microbial fuel cell components
    Vishwanathan, A. S.
    Aiyer, Kartik S.
    Sai, S. Siva Sankara
    Rao, Govind
    BIOSENSORS 2016, 2017, 27 : 260 - 262
  • [34] Colony-live -a high-throughput method for measuring microbial colony growth kinetics- reveals diverse growth effects of gene knockouts in Escherichia coli
    Takeuchi, Rikiya
    Tamura, Takeyuki
    Nakayashiki, Toru
    Tanaka, Yuichirou
    Muto, Ai
    Wanner, Barry L.
    Mori, Hirotada
    BMC MICROBIOLOGY, 2014, 14
  • [35] A high-throughput assay for assessing the cell permeability of combinatorial libraries
    Peng Yu
    Bo Liu
    Thomas Kodadek
    Nature Biotechnology, 2005, 23 : 746 - 751
  • [36] A high-throughput assay for assessing the cell permeability of combinatorial libraries
    Yu, P
    Liu, B
    Kodadek, T
    NATURE BIOTECHNOLOGY, 2005, 23 (06) : 746 - 751
  • [37] BIPES, a cost-effective high-throughput method for assessing microbial diversity
    Zhou, Hong-Wei
    Li, Dong-Fang
    Tam, Nora Fung-Yee
    Jiang, Xiao-Tao
    Zhang, Hai
    Sheng, Hua-Fang
    Qin, Jin
    Liu, Xiao
    Zou, Fei
    ISME JOURNAL, 2011, 5 (04): : 741 - 749
  • [38] BIPES, a cost-effective high-throughput method for assessing microbial diversity
    Hong-Wei Zhou
    Dong-Fang Li
    Nora Fung-Yee Tam
    Xiao-Tao Jiang
    Hai Zhang
    Hua-Fang Sheng
    Jin Qin
    Xiao Liu
    Fei Zou
    The ISME Journal, 2011, 5 : 741 - 749
  • [39] StressChip as a High-Throughput Tool for Assessing Microbial Community Responses to Environmental Stresses
    Zhou, Aifen
    He, Zhili
    Qin, Yujia
    Lu, Zhenmei
    Deng, Ye
    Tu, Qichao
    Hemme, Christopher L.
    Van Nostrand, Joy D.
    Wu, Liyou
    Hazen, Terry C.
    Arkin, Adam P.
    Zhou, Jizhong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (17) : 9841 - 9849
  • [40] High-throughput screening for improved microbial cell factories, perspective and promise
    Leavell, Michael D.
    Singh, Amoolya H.
    Kaufmann-Malaga, Benjamin B.
    CURRENT OPINION IN BIOTECHNOLOGY, 2020, 62 (62) : 22 - 28