Pyphe, a python']python toolbox for assessing microbial growth and cell viability in high-throughput colony screens

被引:26
|
作者
Kamrad, Stephan [1 ,2 ]
Rodriguez-Lopez, Maria [1 ]
Cotobal, Cristina [1 ]
Correia-Melo, Clara [2 ]
Ralser, Markus [2 ,3 ]
Baehler, Juerg [1 ]
机构
[1] UCL, Inst Hlth Ageing, Dept Genet Evolut & Environm, London, England
[2] Francis Crick Inst, Mol Biol Metab Lab, London, England
[3] Charite Univ Med Berlin, Dept Biochem, Berlin, Germany
来源
ELIFE | 2020年 / 9卷
基金
英国惠康基金; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
YEAST; ACCURATE; MUTANTS;
D O I
10.7554/eLife.55160
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microbial fitness screens are a key technique in functional genomics. We present an allin-one solution, pyphe, for automating and improving data analysis pipelines associated with large-scale fitness screens, including image acquisition and quantification, data normalisation, and statistical analysis. Pyphe is versatile and processes fitness data from colony sizes, viability scores from phloxine B staining or colony growth curves, all obtained with inexpensive transilluminating flatbed scanners. We apply pyphe to show that the fitness information contained in late endpoint measurements of colony sizes is similar to maximum growth slopes from time series. We phenotype gene-deletion strains of fission yeast in 59,350 individual fitness assays in 70 conditions, revealing that colony size and viability provide complementary, independent information. Viability scores obtained from quantifying the redness of phloxine-stained colonies accurately reflect the fraction of live cells within colonies. Pyphe is user-friendly, open-source and fully documented, illustrated by applications to diverse fitness analysis scenarios.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 50 条
  • [1] SimPrily: A Python']Python framework to simplify high-throughput genomic simulations
    Gladstein, Ariella L.
    Quinto-Cortes, Consuelo D.
    Pistorius, Julian L.
    Christy, David
    Gantner, Logan
    Joyce, Blake L.
    SOFTWAREX, 2018, 7 : 335 - 340
  • [2] Analysing high-throughput sequencing data in Python']Python with HTSeq 2.0
    Putri, Givanna H.
    Anders, Simon
    Pyl, Paul Theodor
    Pimanda, John E.
    Zanini, Fabio
    BIOINFORMATICS, 2022, 38 (10) : 2943 - 2945
  • [3] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [4] PaDuA: A Python']Python Library for High-Throughput (Phospho)proteomics Data Analysis
    Ressa, Anna
    Fitzpatrick, Martin
    van den Toorn, Henk
    Heck, Albert J. R.
    Altelaar, Maarten
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) : 576 - 584
  • [5] pymzML-Python']Python module for high-throughput bioinformatics on mass spectrometry data
    Bald, Till
    Barth, Johannes
    Niehues, Anna
    Specht, Michael
    Hippler, Michael
    Fufezan, Christian
    BIOINFORMATICS, 2012, 28 (07) : 1052 - 1053
  • [6] DockOnSurf: A Python']Python Code for the High-Throughput Screening of Flexible Molecules Adsorbed on Surfaces
    Marti, Carles
    Blanck, Sarah
    Staub, Ruben
    Loehle, Sophie
    Michel, Carine
    Steinmann, Stephan N.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (07) : 3386 - 3396
  • [7] MPInterfaces: A Materials Project based Python']Python tool for high-throughput computational screening of interfacial systems
    Mathew, Kiran
    Singh, Arunima K.
    Gabriel, Joshua J.
    Choudhary, Kamal
    Sinnott, Susan B.
    Davydov, Albert V.
    Tavazza, Francesca
    Hennig, Richard G.
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 122 : 183 - 190
  • [8] TURBOGENIUS: Python']Python suite for high-throughput calculations of ab initio quantum Monte Carlo methods
    Nakano, Kousuke
    Kohulak, Oto
    Raghav, Abhishek
    Casula, Michele
    Sorella, Sandro
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (22):
  • [9] A COMPREHENSIVE PYTHON']PYTHON TOOLKIT FOR ACCESSING HIGH-THROUGHPUT COMPUTING TO SUPPORT LARGE HYDROLOGIC MODELING TASKS
    Christensen, Scott D.
    Swain, Nathan R.
    Jones, Norman L.
    Nelson, E. James
    Snow, Alan D.
    Dolder, Herman G.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2017, 53 (02): : 333 - 343
  • [10] deTELpy: Python']Python package for high-throughput detection of amino acid substitutions in mass spectrometry datasets
    Landerer, Cedric
    Scheremetjew, Maxim
    Moon, HongKee
    Hersemann, Lena
    Toth-Petroczy, Agnes
    BIOINFORMATICS, 2024, 40 (07)