Alternating evolution discontinuous Galerkin methods for Hamilton-Jacobi equations

被引:9
作者
Liu, Hailiang [1 ]
Pollack, Michael [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Alternating evolution; Hamilton-Jacobi equations; Viscosity solution; FINITE-ELEMENT-METHOD; CENTRAL-UPWIND SCHEMES; CENTRAL WENO SCHEMES; CONSERVATION-LAWS; VISCOSITY SOLUTIONS;
D O I
10.1016/j.jcp.2013.09.038
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we propose a high resolution Alternating Evolution Discontinuous Galerkin (AEDG) method to solve Hamilton-Jacobi equations. The construction of the AEDG method is based on an alternating evolution system of the Hamilton-Jacobi equation, following the previous work Liu et al. (2013) [31] on AE schemes for Hamilton-Jacobi equations. A semi-discrete AEDG scheme derives directly from a sampling of this system on alternating grids. Higher order accuracy is achieved by a combination of high-order polynomial approximation near each grid and a time discretization with matching accuracy. The AEDG methods have the advantage of easy formulation and implementation, and efficient computation of the solution. For the linear equation, we prove the L-2 stability of the method. Numerical experiments for a set of Hamilton-Jacobi equations are presented to demonstrate both accuracy and capacity of these AEDG schemes. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 46
页数:16
相关论文
共 36 条
[1]   Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations [J].
Bryson, S ;
Kurganov, A ;
Levy, D ;
Petrova, G .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (01) :113-138
[2]   High-order central WENO schemes for multidimensional Hamilton-Jacobi equations [J].
Bryson, S ;
Levy, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1339-1369
[3]   A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations [J].
Cheng, Yingda ;
Shu, Chi-Wang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) :398-415
[4]   THE RUNGE-KUTTA LOCAL PROJECTION RHO-1-DISCONTINUOUS-GALERKIN FINITE-ELEMENT METHOD FOR SCALAR CONSERVATION-LAWS [J].
COCKBURN, B ;
SHU, CW .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (03) :337-361
[5]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[6]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[7]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[8]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .3. ONE-DIMENSIONAL SYSTEMS [J].
COCKBURN, B ;
LIN, SY ;
SHU, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) :90-113
[9]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[10]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502