Higher-order superintegrability of a Holt related potential

被引:11
作者
Campoamor-Stursberg, R. [1 ,2 ]
Carinena, J. F. [3 ,4 ]
Ranada, M. F. [3 ,4 ]
机构
[1] Univ Complutense, Dept Geometria & Topol, E-28040 Madrid, Spain
[2] Univ Complutense, IMI, E-28040 Madrid, Spain
[3] Univ Zaragoza, Fac Ciencias, Dept Fis Teor, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, Fac Ciencias, IUMA, E-50009 Zaragoza, Spain
关键词
3RD-ORDER INTEGRALS; HAMILTONIANS; DRACH;
D O I
10.1088/1751-8113/46/43/435202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a recent paper, Post andWinternitz (2011 J. Phys. A: Math. Theor. 44 162001) studied the properties of two-dimensional Euclidean potentials that are linear in one of the two Cartesian variables. In particular, they proved the existence of a potential endowed with an integral of third order and an integral of fourth order. In this paper we show that these results can be obtained in a more simple and direct way by noting that this potential is directly related to the Holt potential. It is proved that the existence of a potential with higher-order superintegrability is a direct consequence of the integrability of the family of Holt type potentials.
引用
收藏
页数:6
相关论文
共 26 条
[1]   N=2 INTEGRABLE SYSTEMS AND FIRST INTEGRALS CONSTRAINED BY SCALING SYMMETRIES [J].
Campoamor-Stursberg, Rutwig .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2013, 10 (08)
[2]  
Eisenhart L. P., 1933, Continuous Groups of Transformations
[3]   QUADRATIC AND CUBIC INVARIANTS IN CLASSICAL MECHANICS [J].
FOKAS, AS ;
LAGERSTROM, PA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 74 (02) :325-341
[4]   EXTENDING INTEGRABLE HAMILTONIAN-SYSTEMS FROM 2 TO N DIMENSIONS [J].
GRAMMATICOS, B ;
DORIZZI, B ;
RAMANI, A ;
HIETARINTA, J .
PHYSICS LETTERS A, 1985, 109 (03) :81-84
[5]   HAMILTONIANS WITH HIGH-ORDER INTEGRALS AND THE WEAK-PAINLEVE CONCEPT [J].
GRAMMATICOS, B ;
DORIZZI, B ;
RAMANI, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (12) :3470-3473
[6]   Hamiltonians separable in Cartesian coordinates and third-order integrals of motion [J].
Gravel, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1003-1019
[7]   Superintegrability with third-order integrals in quantum and classical mechanics [J].
Gravel, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5902-5912
[8]   COUPLING-CONSTANT METAMORPHOSIS AND DUALITY BETWEEN INTEGRABLE HAMILTONIAN-SYSTEMS [J].
HIETARINTA, J ;
GRAMMATICOS, B ;
DORIZZI, B ;
RAMANI, A .
PHYSICAL REVIEW LETTERS, 1984, 53 (18) :1707-1710
[9]   INTEGRABLE FAMILIES OF HENON-HEILES TYPE HAMILTONIANS AND A NEW DUALITY [J].
HIETARINTA, J .
PHYSICAL REVIEW A, 1983, 28 (06) :3670-3672
[10]   Superintegrable systems with third-order integrals of motion [J].
Marquette, Ian ;
Winternitz, Pavel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)