FREQUENCY DOMAIN RECONSTRUCTION FOR PHOTO- AND THERMOACOUSTIC TOMOGRAPHY WITH LINE DETECTORS

被引:14
作者
Haltmeier, Markus [1 ]
机构
[1] Karl Franzens Univ Innsbruck, Dept Comp Sci, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Photoacoustic tomography; image reconstruction; line detectors; reconstruction formulas; frequency domain; MEAN-VALUE OPERATOR; PHOTOACOUSTIC TOMOGRAPHY; IN-VIVO; COMPUTED-TOMOGRAPHY; BIOLOGICAL TISSUES; RADON-TRANSFORM; BLOOD-VESSELS; WAVE-EQUATION; INVERSION; ALGORITHMS;
D O I
10.1142/S0218202509003437
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a version of photoacoustic tomography, that uses line shaped detectors (instead of point-like ones) for the recording of acoustic data. The three-dimensional image reconstruction problem is reduced to a series of two-dimensional ones. First, the initial data of the two-dimensional wave equation is recovered from boundary data, and second, the classical two-dimensional Radon transform is inverted. We discuss uniqueness and stability of reconstruction, and compare frequency domain reconstruction formulas for various geometries.
引用
收藏
页码:283 / 306
页数:24
相关论文
共 83 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed [J].
Agranovsky, Mark ;
Kuchment, Peter .
INVERSE PROBLEMS, 2007, 23 (05) :2089-2102
[3]   Range descriptions for the spherical mean Radon transform [J].
Agranovsky, Mark ;
Kuchment, Peter ;
Quinto, Eric Todd .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 248 (02) :344-386
[4]  
Agranovsky M, 2009, OPT SCI ENG-CRC, V144, P89
[5]   Injectivity sets for the radon transform over circles and complete systems of radial functions [J].
Agranovsky, ML ;
Quinto, ET .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (02) :383-414
[6]   On the injectivity of the circular Radon transform [J].
Ambartsoumian, G ;
Kuchment, P .
INVERSE PROBLEMS, 2005, 21 (02) :473-485
[7]   A range description for the planar circular radon transform [J].
Ambartsoumian, Gaik ;
Kuchment, Peter .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) :681-692
[8]   Half-time image reconstruction in thermoacoustic tomography [J].
Anastasio, MA ;
Zhang, J ;
Pan, XC ;
Zou, Y ;
Ku, G ;
Wang, LHV .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (02) :199-210
[9]   Application of inverse source concepts to photoacoustic tomography [J].
Anastasio, Mark A. ;
Zhang, Jin ;
Modgil, Dimple ;
La Riviere, Patrick J. .
INVERSE PROBLEMS, 2007, 23 (06) :S21-S35
[10]   ON THE DETERMINATION OF A FUNCTION FROM SPHERICAL AVERAGES [J].
ANDERSSON, LE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :214-232