A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements

被引:74
作者
Banerji, Sourangsu [1 ]
Sensale-Rodriguez, Berardi [1 ]
机构
[1] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
PHASE ELEMENTS; ALGORITHMS; OPTIMIZATION; METAMATERIAL; GRATINGS;
D O I
10.1038/s41598-019-42243-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate ultra-thin (1.5-3 lambda(0)), fabrication-error tolerant efficient diffractive terahertz (THz) optical elements designed using a computer-aided optimization-based search algorithm. The basic operation of these components is modeled using scalar diffraction of electromagnetic waves through a pixelated multi-level 3D-printed polymer structure. Through the proposed design framework, we demonstrate the design of various ultrathin planar THz optical elements, namely (i) a high Numerical Aperture (N.A.), broadband aberration rectified spherical lens (0.1 THz-0.3 THz), (ii) a spectral splitter (0.3 THz-0.6 THz) and (iii) an on-axis broadband transmissive hologram (0.3 THz-0.5 THz). Such an all-dielectric computational design-based approach is advantageous against metallic or dielectric metasurfaces from the perspective that it incorporates all the inherent structural advantages associated with a scalar diffraction based approach, such as (i) ease of modeling, (ii) substrate-less facile manufacturing, (iii) planar geometry, (iv) high efficiency along with (v) broadband operation, (vi) area scalability and (vii) fabrication error-tolerance. With scalability and error tolerance being two major bottlenecks of previous design strategies. This work is therefore, a significant step towards the design of THz optical elements by bridging the gap between structural and computational design i.e. through a hybrid design-based approach enabling considerably less computational resources than the previous state of the art. Furthermore, the approach used herein can be expanded to a myriad of optical elements at any wavelength regime.
引用
收藏
页数:9
相关论文
共 45 条
[1]  
Aagedal H, 1996, J MOD OPTIC, V43, P1409, DOI 10.1080/09500349608232814
[2]   Multiwavelength achromatic metasurfaces by dispersive phase compensation [J].
Aieta, Francesco ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Capasso, Federico .
SCIENCE, 2015, 347 (6228) :1342-1345
[3]   A comparison of the iterative Fourier transform method and evolutionary algorithms for the design of diffractive optical elements [J].
Birch, P ;
Young, R ;
Farsari, M ;
Chatwin, C ;
Budgett, D .
OPTICS AND LASERS IN ENGINEERING, 2000, 33 (06) :439-448
[4]   3-D Printed Anti-Reflection Structures for the Terahertz Region [J].
Bomba, Jaroslaw ;
Suszek, Jaroslaw ;
Makowski, Michal ;
Sobczyk, Artur ;
Sypek, Maciej .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2018, 39 (01) :24-35
[5]   A NEW THEORETICAL METHOD FOR DIFFRACTION GRATINGS AND ITS NUMERICAL APPLICATION [J].
CHANDEZON, J ;
MAYSTRE, D ;
RAOULT, G .
JOURNAL OF OPTICS-NOUVELLE REVUE D OPTIQUE, 1980, 11 (04) :235-241
[6]   A review of metasurfaces: physics and applications [J].
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Yu, Nanfang .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)
[7]   A terahertz metamaterial with unnaturally high refractive index [J].
Choi, Muhan ;
Lee, Seung Hoon ;
Kim, Yushin ;
Kang, Seung Beom ;
Shin, Jonghwa ;
Kwak, Min Hwan ;
Kang, Kwang-Young ;
Lee, Yong-Hee ;
Park, Namkyoo ;
Min, Bumki .
NATURE, 2011, 470 (7334) :369-373
[8]   Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach [J].
Delen, N ;
Hooker, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (04) :857-867
[9]   3D printed diffractive terahertz lenses [J].
Furlan, Walter D. ;
Ferrando, Vicente ;
Monsoriu, Juan A. ;
Zagrajek, Przemyslaw ;
Czerwinska, Bieta ;
Szustakowski, Mieczyslaw .
OPTICS LETTERS, 2016, 41 (08) :1748-1751
[10]   COMPUTER GENERATED DIFFRACTIVE MULTIFOCAL LENS [J].
GOLUB, MA ;
DOSKOLOVICH, LL ;
KAZANSKIY, NL ;
KHARITONOV, SI ;
SOIFER, VA .
JOURNAL OF MODERN OPTICS, 1992, 39 (06) :1245-1251