Modelling the effects of reaction temperature and flow rate on the conversion of ethanol to 1,3-butadiene

被引:35
作者
Da Ros, Simoni [1 ,2 ]
Jones, Matthew D. [2 ]
Mattia, Davide [3 ]
Schwaab, Marcio [4 ]
Noronha, Fabio B. [5 ]
Pinto, Jose Carlos [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, Programa Engn Quim, Cidade Univ,CP 68502, BR-21941972 Rio De Janeiro, Brazil
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[3] Univ Bath, Dept Chem Engn, Bath BA2 7AY, Avon, England
[4] Univ Fed Rio Grande do Sul, Dept Engn Quim, Rua Engn Luiz Englert S-N, BR-90040040 Porto Alegre, RS, Brazil
[5] Natl Inst Technol, Catalysis Div, Av Venezuela 82, BR-20081312 Rio De Janeiro, Brazil
基金
英国工程与自然科学研究理事会;
关键词
Ethanol; 1,3-Butadiene; Silica-magnesia catalyst; Experimental design; Kinetics; SUSTAINABILITY ASSESSMENT; CATALYTIC CONVERSION; BUTADIENE FORMATION; MGO-SIO2; CATALYSTS; SILICA; CHEMISTRY; MECHANISM; PRODUCTS; MAGNESIA; LEBEDEV;
D O I
10.1016/j.apcata.2016.11.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A full factorial experimental design was performed to investigate the conversion of ethanol to 1,3 butadiene (1,3-BD), through manipulation of the reaction temperature and ethanol weight hourly space velocity. Reactions were carried out in presence of the catalyst K2O:ZrO2:ZnO/MgO-SiO2, prepared by co-precipitation methods. Mathematical models were developed to correlate observed product selectivities, 1,3-BD yields and productivities with the manipulated reaction variables, allowing for quantification of variable effects on catalyst activity and assessment of the kinetic mechanism. Obtained 1,3-BD productivities were as high as 0.5g(BD)/g(cat) h,g(BD)/g(cat) h, with 1,3-BD yields of 27%. Results suggest that acetaldehyde condensation is the rate determining step. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 48 条
[1]   Effect of Preparation Method and CuO Promotion in the Conversion of Ethanol into 1,3-Butadiene over SiO2-MgO Catalysts [J].
Angelici, Carlo ;
Velthoen, Marjolein E. Z. ;
Weckhuysen, Bert M. ;
Bruijnincx, Pieter C. A. .
CHEMSUSCHEM, 2014, 7 (09) :2505-2515
[2]  
Baerdemaeker T.D., 2015, ACS CATAL, V5, P3392
[3]   Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides [J].
Baylon, Rebecca A. L. ;
Sun, Junming ;
Wang, Yong .
CATALYSIS TODAY, 2016, 259 :446-452
[4]  
Bhattacharyya S.K., 1962, J APPL CHEM, V12, P97
[5]   KINETIC STUDY ON MECHANISM OF CATALYTIC CONVERSION OF ETHANOL TO BUTADIENE [J].
BHATTACHARYYA, SK ;
SANYAL, SK .
JOURNAL OF CATALYSIS, 1967, 7 (02) :152-+
[6]  
Bhattacharyya SK., 1962, J. Appl. Chem, V12, P105, DOI [10.1002/jctb.5010120302, DOI 10.1002/JCTB.5010120302]
[7]  
Box G.E., 1978, STAT EXPT
[8]  
Box G.E.P., 2005, Statistics for Experimenters. Design, Innovation, and Discovery, V2
[9]   Synthesis and characterisation of magnesium silicate hydrate gels [J].
Brew, DRM ;
Glasser, FP .
CEMENT AND CONCRETE RESEARCH, 2005, 35 (01) :85-98
[10]   CO/HZSM-5 CATALYST FOR SYNGAS CONVERSION - INFLUENCE OF PROCESS VARIABLES [J].
CALLEJA, G ;
DELUCAS, A ;
VANGRIEKEN, R .
FUEL, 1995, 74 (03) :445-451