Novel Biopanning Strategy To Identify Epitopes Associated with Vaccine Protection

被引:35
作者
Bachler, Barbara C. [1 ,2 ]
Humbert, Michael [1 ,3 ]
Palikuqi, Brisa [1 ]
Siddappa, Nagadenahalli B. [1 ,3 ]
Lakhashe, Samir K. [1 ,3 ]
Rasmussen, Robert A. [1 ,3 ]
Ruprecht, Ruth M. [1 ,3 ]
机构
[1] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA
[2] Univ Vet Med Vienna, VetCore, Res Facil, Vienna, Austria
[3] Harvard Univ, Sch Med, Boston, MA USA
基金
美国国家卫生研究院;
关键词
HUMAN-IMMUNODEFICIENCY-VIRUS; HIV-1 TAT PROTEIN; BIMODAL AIDS VACCINE; B-CELL EPITOPES; RHESUS MACAQUES; TYPE-1; TAT; NEUTRALIZING ANTIBODIES; MONOCLONAL-ANTIBODIES; CYNOMOLGUS MONKEYS; PEPTIDE LIBRARIES;
D O I
10.1128/JVI.02888-12
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Identifying immune correlates of protection is important to develop vaccines against infectious diseases. We designed a novel, universally applicable strategy to profile the antibody (Ab) repertoire of protected vaccine recipients, using recombinant phages encoding random peptide libraries. The new approach, termed "protection-linked (PL) biopanning," probes the Ab paratopes of protected vaccinees versus those with vaccine failure. As proof of concept, we screened plasma samples from vaccinated rhesus macaques (RMs) that had completely resisted multiple mucosal challenges with R5-tropic simian-human immunodeficiency viruses (SHIVs). The animals had been immunized with a multicomponent vaccine (multimeric HIV-1 gp160, HIV-1 Tat, and SIV Gag-Pol particles). After PL biopanning, we analyzed the phagotopes selected for amino acid homologies; in addition to the expected Env mimotopes, one recurring motif reflected the neutralizing Ab epitope at the N terminus (NT) of HIV-1 Tat. Subsequent binding and functional assays indicated that anti-Tat NT Abs were present only in completely or partially protected RMs; peak viremia of the latter was inversely correlated with anti-Tat NT Ab titers. In contrast, highly viremic, unvaccinated controls did not develop detectable Abs against the same epitope. Based upon the protective effect observed in vivo, we suggest that Tat should be included in multicomponent HIV-1 vaccines. Our data highlight the power of the new PL-biopanning strategy to identify Ab responses with significant association to vaccine protection, regardless of the mechanism(s) or targets of the protective Abs. PL biopanning is also unbiased with regard to pathogens or disease model, making it a universal tool.
引用
收藏
页码:4403 / 4416
页数:14
相关论文
共 69 条
[1]   Emerging Concepts on the Role of Innate Immunity in the Prevention and Control of HIV Infection [J].
Ackerman, Margaret E. ;
Dugast, Anne-Sophie ;
Alter, Galit .
ANNUAL REVIEW OF MEDICINE, VOL 63, 2012, 63 :113-130
[2]   HIV-1 Tat protein mimicry of chemokines [J].
Albini, A ;
Ferrini, S ;
Benelli, R ;
Sforzini, S ;
Giunciuglio, D ;
Aluigi, MG ;
Proudfoot, AEI ;
Alouani, S ;
Wells, TNC ;
Mariani, G ;
Rabin, RL ;
Farber, JM ;
Noonan, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13153-13158
[3]   Host genes associated with HIV/AIDS: advances in gene discovery [J].
An, Ping ;
Winkler, Cheryl A. .
TRENDS IN GENETICS, 2010, 26 (03) :119-131
[4]   THE TAT PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1, A GROWTH-FACTOR FOR AIDS KAPOSI-SARCOMA AND CYTOKINE-ACTIVATED VASCULAR CELLS, INDUCES ADHESION OF THE SAME CELL-TYPES BY USING INTEGRIN RECEPTORS RECOGNIZING THE RGD AMINO-ACID-SEQUENCE [J].
BARILLARI, G ;
GENDELMAN, R ;
GALLO, RC ;
ENSOLI, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7941-7945
[5]   TAR-INDEPENDENT ACTIVATION OF THE HIV-1-LTR - EVIDENCE THAT TAT REQUIRES SPECIFIC REGIONS OF THE PROMOTER [J].
BERKHOUT, B ;
GATIGNOL, A ;
RABSON, AB ;
JEANG, KT .
CELL, 1990, 62 (04) :757-767
[6]   Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody [J].
Burton, Dennis R. ;
Hessell, Ann J. ;
Keele, Brandon F. ;
Klasse, Per Johan ;
Ketas, Thomas A. ;
Moldt, Brian ;
Dunlop, D. Cameron ;
Poignard, Pascal ;
Doyle, Lara A. ;
Cavacini, Lisa ;
Veazey, Ronald S. ;
Moore, John P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (27) :11181-11186
[7]   Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine [J].
Cafaro, A ;
Caputo, A ;
Fracasso, C ;
Maggiorella, MT ;
Goletti, D ;
Baroncelli, S ;
Pace, M ;
Sernicola, L ;
Koanga-Mogtomo, ML ;
Betti, M ;
Borsetti, A ;
Belli, R ;
Åkerblom, L ;
Corrias, F ;
Buttò, S ;
Heeney, J ;
Verani, P ;
Titti, F ;
Ensoli, B .
NATURE MEDICINE, 1999, 5 (06) :643-650
[8]   What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? [J].
Campbell, Grant R. ;
Loret, Erwann P. .
RETROVIROLOGY, 2009, 6
[9]   HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development [J].
Caputo, Antonella ;
Gavioli, Riccardo ;
Bellino, Stefania ;
Longo, Olimpia ;
Tripiciano, Antonella ;
Francavilla, Vittorio ;
Sgadari, Cecilia ;
Paniccia, Giovanni ;
Titti, Fausto ;
Cafaro, Aurelio ;
Ferrantelli, Flavia ;
Monini, Paolo ;
Ensoli, Fabrizio ;
Ensoli, Barbara .
INTERNATIONAL REVIEWS OF IMMUNOLOGY, 2009, 28 (05) :285-334
[10]   HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region [J].
Chang, HC ;
Samaniego, F ;
Nair, BC ;
Buonaguro, L ;
Ensoli, B .
AIDS, 1997, 11 (12) :1421-1431