Diffusion MRI Noise Mapping Using Random Matrix Theory

被引:541
作者
Veraart, Jelle [1 ,2 ]
Fieremans, Els [1 ]
Novikov, Dmitry S. [1 ]
机构
[1] NYU, Dept Radiol, Ctr Biomed Imaging, Sch Med, 660 First Ave, New York, NY 10016 USA
[2] Univ Antwerp, Dept Phys, IMinds Vis Lab, Antwerp, Belgium
关键词
principal component analysis; Marchenko-Pastur; Rician; diffusion MRI; noise; MAXIMUM-LIKELIHOOD-ESTIMATION; SPATIALLY VARIANT NOISE; ROBUST ESTIMATION; CORRECTION SCHEME; RICIAN NOISE; RECONSTRUCTION; COMPLEX; IMAGES;
D O I
10.1002/mrm.26059
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To estimate the spatially varying noise map using a redundant series of magnitude MR images. Methods: We exploit redundancy in non-Gaussian distributed multidirectional diffusion MRI data by identifying its noise-only principal components, based on the theory of noisy covariance matrices. The bulk of principal component analysis eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur distribution, parameterized by the noise level. This allows us to estimate noise level in a local neighborhood based on the singular value decomposition of a matrix combining neighborhood voxels and diffusion directions. Results: We present a model-independent local noise mapping method capable of estimating the noise level down to about 1% error. In contrast to current state-of-the-art techniques, the resultant noise maps do not show artifactual anatomical features that often reflect physiological noise, the presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR signal. Conclusions: Simulations and experiments show that typical diffusion MRI data exhibit sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level by interpreting the principal component analysis eigenspectrum in terms of the Marchenko-Pastur distribution. (C) 2015 International Society for Magnetic Resonance in Medicine
引用
收藏
页码:1582 / 1593
页数:12
相关论文
共 50 条
[1]   Noise Variance Estimation for Spectrum Sensing in Cognitive Radio Networks [J].
Ahmed, Adeel ;
Hu, Yim Fun ;
Noras, James M. .
2014 AASRI CONFERENCE ON CIRCUIT AND SIGNAL PROCESSING (CSP 2014), 2014, 9 :37-43
[2]   Spatially variant noise estimation in MRI: A homomorphic approach [J].
Aja-Fernandez, Santiago ;
Pieciak, Tomasz ;
Vegas-Sanchez-Ferrero, Gonzalo .
MEDICAL IMAGE ANALYSIS, 2015, 20 (01) :184-197
[3]   Influence of noise correlation in multiple-coil statistical models with sum of squares reconstruction [J].
Aja-Fernandez, Santiago ;
Tristan-Vega, Antonio .
MAGNETIC RESONANCE IN MEDICINE, 2012, 67 (02) :580-585
[4]   Statistical Noise Analysis in GRAPPA Using a Parametrized Noncentral Chi Approximation Model [J].
Aja-Fernandez, Santiago ;
Tristan-Vega, Antonio ;
Hoge, W. Scott .
MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (04) :1195-1206
[5]  
[Anonymous], 1966, METHODS MATH PHYS
[6]   Suppression of MRI Truncation Artifacts Using Total Variation Constrained Data Extrapolation [J].
Block, Kai Tobias ;
Uecker, Martin ;
Frahm, Jens .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2008, 2008
[7]   RESTORE: Robust estimation of tensors by outlier rejection [J].
Chang, LC ;
Jones, DK ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) :1088-1095
[8]   Iterative reweighted linear least squares for accurate, fast, and robust estimation of diffusion magnetic resonance parameters [J].
Collier, Quinten ;
Veraart, Jelle ;
Jeurissen, Ben ;
den Dekker, Arnold J. ;
Sijbers, Jan .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (06) :2174-2184
[9]   Signal-to-noise measurements in magnitude images from NMR phased arrays [J].
Constantinides, CD ;
Atalar, E ;
McVeigh, ER .
MAGNETIC RESONANCE IN MEDICINE, 1997, 38 (05) :852-857
[10]   Robust Rician noise estimation for MR images [J].
Coupe, Pierrick ;
Manjon, Jose V. ;
Gedamu, Elias ;
Arnold, Douglas ;
Robles, Montserrat ;
Collins, D. Louis .
MEDICAL IMAGE ANALYSIS, 2010, 14 (04) :483-493