Submodular spectral functions of principal submatrices of a hermitian matrix, extensions and applications

被引:8
作者
Friedland, S. [1 ]
Gaubert, S. [2 ,3 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Ecole Polytech, INRIA, F-91128 Palaiseau, France
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
基金
美国国家科学基金会;
关键词
Operator monotone functions; Loewner theorem; Submodular functions; Hadamard-Fischer inequality; M-matrices; CUR approximations; Self-adjoint operators; SYMMETRIC MATRICES; INEQUALITIES; APPROXIMATIONS; SET;
D O I
10.1016/j.laa.2011.11.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the multiplicative submodularity of the principal determinants of a nonnegative definite hermitian matrix to other spectral functions. We show that if f is the primitive of a function that is operator monotone on an interval containing the spectrum of a hermitian matrix A, then the function I bar right arrow trf(A[I]) is supermodular, meaning that trf(A[I]) + trf(A[J]) <= trf(A[I boolean OR J]) + trf(A[I boolean AND J]), where A[I] denotes the I x I principal submatrix of A. We discuss extensions to self-adjoint operators on infinite dimensional Hilbert space and to M-matrices. We also discuss an application to CUR approximation of nonnegative hermitian matrices. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3872 / 3884
页数:13
相关论文
共 24 条