An Extension Theorem for convex functions of class C1,1 on Hilbert spaces

被引:9
作者
Azagra, Daniel [1 ]
Mudarra, Carlos [2 ]
机构
[1] Univ Complutense, Fac Ciencias Matemat, Dept Anal Matemat, ICMAT CSIC UAM UC3 UCM, E-28040 Madrid, Spain
[2] ICMAT CSIC UAM UC3 UCM, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
Convex function; C-1; function; Whitney extension theorem;
D O I
10.1016/j.jmaa.2016.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a Hilbert space, E subset of H be an arbitrary subset and f : E -> R, G : E -> H be two functions. We give a necessary and sufficient condition on the pair (f, G) for the existence of a convex function F is an element of C-1,C-1 (H) such that F = f and del F = G on E. We also show that, if this condition is met, F can be taken so that Lip(del F) = Lip(G). We give a geometrical application of this result, concerning interpolation of sets by boundaries of C-1,C-1 convex bodies in H. Finally, we give a counterexample to a related question concerning smooth convex extensions of smooth convex functions with derivatives which are not uniformly continuous. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1167 / 1182
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 2014, Geometric Measure Theory. Classics in Mathematics
[2]  
Azagra D., 2015, ARXIV150703931MATHCA
[3]  
Azagra D., 2015, ARXIV150105226V4MATH
[4]  
Brudnyi A, 2012, MG MATH, V102, P1, DOI 10.1007/978-3-0348-0209-3
[5]  
Fefferman C, 2009, B AM MATH SOC, V46, P207
[6]  
Ghomi M, 2001, J DIFFER GEOM, V57, P239
[7]   The problem of optimal smoothing for convex functions [J].
Ghomi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2255-2259
[8]  
Glaeser G., 1958, J. Analyse Math, V6, P1, DOI [10.1007/BF02790231, DOI 10.1007/BF02790231]
[9]   On smooth extensions of vector-valued functions defined on closed subsets of Banach spaces [J].
Jimenez-Sevilla, M. ;
Sanchez-Gonzalez, L. .
MATHEMATISCHE ANNALEN, 2013, 355 (04) :1201-1219
[10]   MINIMAL LIPSCHITZ EXTENSIONS TO DIFFERENTIABLE FUNCTIONS DEFINED ON A HILBERT SPACE. [J].
Le Gruyer, Erwan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :1101-1118