Analysis and Interpretation of metagenomics data: an approach

被引:25
作者
Navgire, Gauri S. [1 ]
Goel, Neha [2 ]
Sawhney, Gifty [3 ]
Sharma, Mohit [4 ,5 ]
Kaushik, Prashant [6 ]
Mohanta, Yugal Kishore [7 ]
Mohanta, Tapan Kumar [8 ]
Al-Harrasi, Ahmed [8 ]
机构
[1] Savitribai Phule Pune Univ, Dept Microbiol, Maharastra 411007, India
[2] Forest Res Inst, Dept Genet & Tree Improvement, Dehra Dun 248006, India
[3] CSIR Indian Inst Integrat Med, Acad Sci & Innovat Res AcSIR, Inflammat Pharmacol Div, Jammu 180001, Jammu Kashmir, India
[4] Med Univ Warsaw, Dept Mol Med, Karkow, Poland
[5] Malopolska Ctr Biotechnol, Karkow, Poland
[6] Univ Politecn Valencia, Inst Conservac & Mejora Agrodiversidad Valenciana, Valencia 46022, Spain
[7] Univ Sci & Technol Meghalaya, Baridua 793101, Meghalaya, India
[8] Univ Nizwa, Nat & Med Sci Res Ctr, Nizwa 616, Oman
关键词
Metagenomics; Next-generation sequencing; Crops; Pipelines; Analysis; COMMUNITY STRUCTURE; RHIZOSPHERE; ANNOTATION; SEQUENCES; SOIL; MICROBIOME; MANAGEMENT; FRAMEWORK; GALAXY; IMG/M;
D O I
10.1186/s12575-022-00179-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Advances in next-generation sequencing technologies have accelerated the momentum of metagenomic studies, which is increasing yearly. The metagenomics field is one of the versatile applications in microbiology, where any interaction in the environment involving microorganisms can be the topic of study. Due to this versatility, the number of applications of this omics technology reached its horizons. Agriculture is a crucial sector involving crop plants and microorganisms interacting together. Hence, studying these interactions through the lenses of metagenomics would completely disclose a new meaning to crop health and development. The rhizosphere is an essential reservoir of the microbial community for agricultural soil. Hence, we focus on the R&D of metagenomic studies on the rhizosphere of crops such as rice, wheat, legumes, chickpea, and sorghum. These recent developments are impossible without the continuous advancement seen in the next-generation sequencing platforms; thus, a brief introduction and analysis of the available sequencing platforms are presented here to have a clear picture of the workflow. Concluding the topic is the discussion about different pipelines applied to analyze data produced by sequencing techniques and have a significant role in interpreting the outcome of a particular experiment. A plethora of different software and tools are incorporated in the automated pipelines or individually available to perform manual metagenomic analysis. Here we describe 8-10 advanced, efficient pipelines used for analysis that explain their respective workflows to simplify the whole analysis process.
引用
收藏
页数:22
相关论文
共 118 条
  • [1] Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities
    Acinas, Silvia G.
    Sanchez, Pablo
    Salazar, Guillem
    Cornejo-Castillo, Francisco M.
    Sebastian, Marta
    Logares, Ramiro
    Royo-Llonch, Marta
    Paoli, Lucas
    Sunagawa, Shinichi
    Hingamp, Pascal
    Ogata, Hiroyuki
    Lima-Mendez, Gipsi
    Roux, Simon
    Gonzalez, Jose M.
    Arrieta, Jesus M.
    Alam, Intikhab S.
    Kamau, Allan
    Bowler, Chris
    Raes, Jeroen
    Pesant, Stephane
    Bork, Peer
    Agusti, Susana
    Gojobori, Takashi
    Vaque, Dolors
    Sullivan, Matthew B.
    Pedros-Alio, Carlos
    Massana, Ramon
    Duarte, Carlos M.
    Gasol, Josep M.
    [J]. COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [2] The diverse functional genes of maize rhizosphere microbiota assessed using shotgun metagenomics
    Akinola, Saheed Adekunle
    Ayangbenro, Ayansina Segun
    Babalola, Olubukola Oluranti
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (08) : 3193 - 3201
  • [3] INDIGO - INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles
    Alam, Intikhab
    Antunes, Andre
    Kamau, Allan Anthony
    Alawi, Wail Ba
    Kalkatawi, Manal
    Stingl, Ulrich
    Bajic, Vladimir B.
    [J]. PLOS ONE, 2013, 8 (12):
  • [4] A new genomic blueprint of the human gut microbiota
    Almeida, Alexandre
    Mitchell, Alex L.
    Boland, Miguel
    Forster, Samuel C.
    Gloor, Gregory B.
    Tarkowska, Aleksandra
    Lawley, Trevor D.
    Finn, Robert D.
    [J]. NATURE, 2019, 568 (7753) : 499 - +
  • [5] Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/nmeth.3103, 10.1038/NMETH.3103]
  • [6] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [7] CoNVEX: copy number variation estimation in exome sequencing data using HMM
    Amarasinghe, Kaushalya C.
    Li, Jason
    Halgamuge, Saman K.
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [8] Whole genome shotgun sequence of Bacillus paralicheniformis strain KMS 80, a rhizobacterial endophyte isolated from rice (Oryza sativa L.)
    Annapurna, Kannepalli
    Govindasamy, Venkadasamy
    Sharma, Meenakshi
    Ghosh, Arpita
    Chikara, Surendra K.
    [J]. 3 BIOTECH, 2018, 8 (05)
  • [9] MetaStorm: A Public Resource for Customizable Metagenomics Annotation
    Arango-Argoty, Gustavo
    Singh, Gargi
    Heath, Lenwood S.
    Pruden, Amy
    Xiao, Weidong
    Zhang, Liqing
    [J]. PLOS ONE, 2016, 11 (09):
  • [10] MetaFlow|mics: Scalable and Reproducible Nextflow Pipelines for the Analysis of Microbiome Marker Data
    Arisdakessian, Cedric
    Cleveland, Sean B.
    Belcaid, Mahdi
    [J]. PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2020, PEARC 2020, 2020, : 120 - 124