The stringy instanton partition function

被引:17
作者
Bonelli, Giulio [1 ,2 ,3 ]
Sciarappa, Antonio [1 ,2 ]
Tanzini, Alessandro [1 ,2 ]
Vasko, Petr [1 ,2 ]
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
[3] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2014年 / 01期
关键词
Nonperturbative Effects; Topological Strings; QUANTUM COHOMOLOGY; GAUGE-THEORIES;
D O I
10.1007/JHEP01(2014)038
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We perform an exact computation of the gauged linear sigma model associated to a D1-D5 brane system on a resolved A(1) singularity. This is accomplished via supersymmetric localization on the blown-up two-sphere. We show that in the blow-down limit C-2/Z(2) the partition function reduces to the Nekrasov partition function evaluating the equivariant volume of the instanton moduli space. For finite radius we obtain a tower of world-sheet instanton corrections, that we identify with the equivariant Gromov-Witten invariants of the ADHM moduli space. We show that these corrections can be encoded in a deformation of the Seiberg-Witten prepotential. From the mathematical viewpoint, the D1-D5 system under study displays a twofold nature: the D1-branes viewpoint captures the equivariant quantum cohomology of the ADHM instanton moduli space in the Givental formalism, and the D5-branes viewpoint is related to higher rank equivariant Donaldson-Thomas invariants of P-1 x C-2.
引用
收藏
页数:31
相关论文
共 74 条
  • [1] Alday LF, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2010)113
  • [2] Liouville Correlation Functions from Four-Dimensional Gauge Theories
    Alday, Luis F.
    Gaiotto, Davide
    Tachikawa, Yuji
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) : 167 - 197
  • [3] [Anonymous], ARXIV12112240
  • [4] [Anonymous], hep:th/0002222
  • [5] [Anonymous], ARXIV09084052
  • [6] Beem C., ARXIV12111986
  • [7] Benini F, 2015, COMMUN MATH PHYS, V334, P1483, DOI 10.1007/s00220-014-2112-z
  • [8] HOLOMORPHIC ANOMALIES IN TOPOLOGICAL FIELD-THEORIES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. NUCLEAR PHYSICS B, 1993, 405 (2-3) : 279 - 304
  • [9] Bertram A., MATH AG 0304403
  • [10] Bertram A., MATHAG0407254