On two conjectures of Randic index and the largest signless Laplacian eigenvalue of graphs

被引:13
作者
Deng, Hanyuan [1 ]
Balachandran, S. [2 ]
Ayyaswamy, S. K. [2 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[2] SASTRA Univ, Sch Humanities & Sci, Dept Math, Thanjavur, India
关键词
Randic index; Harmonic index; Largest eigenvalue; Sign less Laplacian matrix; Adjacency matrix; VARIABLE NEIGHBORHOOD SEARCH; HARMONIC INDEX; EXTREMAL GRAPHS; BOUNDS;
D O I
10.1016/j.jmaa.2013.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Randic index R of a graph G is defined as the sum of (d(i)d(j))(-1/2) over all edges v(i)v(j) of G, where d(i) denotes the degree of a vertex v(i) in G. q(1) is the largest eigenvalue of the signless Laplacian matrix Q = D + A of G, where D is the diagonal matrix with degrees of the vertices on the main diagonal and A is the adjacency matrix of G. Hansen and Lucas [18] conjectured (1) q(1) - R <= 3/2n - 2 and equality holds for G congruent to K-n and (2) q(1)/R <= {4n-4/n, 4 <= n <= 12, n/root n-1, n >= 13 4nn-4 4 < n < 12, with equality if and only if G congruent to K-n for 4 <= n <= 12 and G congruent to S-n for n >= 13, respectively. In this paper, we prove the conjecture (1) and obtain a result very close to the conjecture (2). Moreover, we give some results relating harmonic index and the largest eigenvalue of the adjacency matrix. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 200
页数:5
相关论文
共 27 条
[1]  
Aouchiche M, 2006, MATCH-COMMUN MATH CO, V56, P541
[2]  
Aouchiche M, 2007, MATCH-COMMUN MATH CO, V58, P83
[3]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[4]   Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system [J].
Caporossi, G ;
Hansen, P .
DISCRETE MATHEMATICS, 2000, 212 (1-2) :29-44
[5]  
[Chen Yan 陈晏], 2002, Applied Mathematics. Series B, A Journal of Chinese Universities, V17, P371
[6]   EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN [J].
Cvetkovic, Dragos ;
Rowlinson, Peter ;
Simic, Slobodan .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95) :11-27
[7]  
Deng H., PREPRINT
[8]  
Deng H., ARS COMBIN IN PRESS
[9]   On the harmonic index and the chromatic number of a graph [J].
Deng, Hanyuan ;
Balachandran, S. ;
Ayyaswamy, S. K. ;
Venkatakrishnan, Y. B. .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2740-2744
[10]  
Fajtlowicz S., 1987, Congr. Numerantium, V60, P187, DOI DOI 10.4236/APM.2014.45021